Reconstruction of Multidimensional Signals from Irregular Noisy Samples (Articolo in rivista)

Type
Label
  • Reconstruction of Multidimensional Signals from Irregular Noisy Samples (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TSP.2008.925953 (literal)
Alternative label
  • A.Nordio; C.-F.Chiasserini; E. Viterbo (2008)
    Reconstruction of Multidimensional Signals from Irregular Noisy Samples
    in IEEE transactions on signal processing
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • A.Nordio; C.-F.Chiasserini; E. Viterbo (literal)
Pagina inizio
  • 4274 (literal)
Pagina fine
  • 4285 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 56 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 12 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 9 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Chiasserini = Department of Electronic Engineering, Politecnico di Torino, Torino, Italy Viterbo = DEIS, Università della Calabria, Rende, Italy (literal)
Titolo
  • Reconstruction of Multidimensional Signals from Irregular Noisy Samples (literal)
Abstract
  • We focus on a multidimensional field with uncorrelated spectrum and study the quality of the reconstructed signal when the field samples are irregularly spaced and affected by independent and identically distributed noise. More specifically, we apply linear reconstruction techniques and take the mean-square error (MSE) of the field estimate as a metric to evaluate the signal reconstruction quality. We find that the MSE analysis could be carried out by using the closed-form expression of the eigenvalue distribution of the matrix representing the sampling system. Unfortunately, such distribution is still unknown. Thus, we first derive a closed-form expression of the distribution moments, and we find that the eigenvalue distribution tends to the Marcnko-Pastur distribution as the field dimension goes to infinity. Finally, by using our approach, we derive a tight approximation to the MSE of the reconstructed field. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it