http://www.cnr.it/ontology/cnr/individuo/prodotto/ID20446
Recursive Algorithms for Inner Ellipsoidal Approximation of Convex Polytopes (Articolo in rivista)
- Type
- Label
- Recursive Algorithms for Inner Ellipsoidal Approximation of Convex Polytopes (Articolo in rivista) (literal)
- Anno
- 2003-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/S0005-1098(03)00180-8 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- F. Dabbene, P. Gay, B. T. Polyak (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Times Cited: 4 (from Web of Science) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- In this paper, fast recursive algorithms for the approximation of an n-dimensional convex polytope by means of an inscribed ellipsoid
are presented. These algorithms consider at each step a single inequality describing the polytope and, under mild assumptions, they are
guaranteed to converge in a finite number of steps. For their recursive nature, the proposed algorithms are better suited to treat a quite
large number of constraints than standard off-line solutions, and have their natural application to problems where the set of constraints is
iteratively updated, as on-line estimation problems, nonlinear convex optimization procedures and set membership identification. (literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Fabrizio Dabbene is with IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Paolo Gay is with Dipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale, Università degli Studi di Torino, Grugliasco (To), Italy
Boris T. Polyak is with Institute for Control Science, Moscow, Russia (literal)
- Titolo
- Recursive Algorithms for Inner Ellipsoidal Approximation of Convex Polytopes (literal)
- Abstract
- In this paper, fast recursive algorithms for the approximation of an n-dimensional convex polytope by means of an inscribed ellipsoid
are presented. These algorithms consider at each step a single inequality describing the polytope and, under mild assumptions, they are
guaranteed to converge in a finite number of steps. For their recursive nature, the proposed algorithms are better suited to treat a quite
large number of constraints than standard off-line solutions, and have their natural application to problems where the set of constraints is
iteratively updated, as on-line estimation problems, nonlinear convex optimization procedures and set membership identification. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di