Regulation of electron transport in microalgae (Articolo in rivista)

Type
Label
  • Regulation of electron transport in microalgae (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.bbabio.2010.12.004 (literal)
Alternative label
  • Cardol P, Forti G, Finazzi G (2011)
    Regulation of electron transport in microalgae
    in Biochimica et biophysica acta. Bioenergetics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cardol P, Forti G, Finazzi G (literal)
Pagina inizio
  • 912 (literal)
Pagina fine
  • 918 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 1807 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • [1] Univ Grenoble 1, Lab Physiol Cellulaire & Vegetale, Commissariat Energie Atom & Energies Alternat CEA, CNRS,INRA,IRTSV,CEA Grenoble,UMR 5168, F-38054 Grenoble, France [ 2 ] Univ Milan, Ist Biofis, CNR, Dipartimento Biol, I-20133 Milan, Italy [ 3 ] Univ Liege, Inst Bot, Lab Genet Microorganismes, B-4000 Liege, Belgium (literal)
Titolo
  • Regulation of electron transport in microalgae (literal)
Abstract
  • Unicellular algae are characterized by an extreme flexibility with respect to their responses to environmental constraints. This flexibility probably explains why microalgae show a very high biomass yield, constitute one of the major contributors to primary productivity in the oceans and are considered a promising choice for biotechnological applications. Flexibility results from a combination of several factors including fast changes in the light-harvesting apparatus and a strong interaction between different metabolic processes (e.g. respiration and photosynthesis), which all take place within the same cell. Microalgae are also capable of modifying their photosynthetic electron flow capacity, by changing its maximum rate and/or by diverting photogenerated electrons towards different sinks depending on their growth status. In this review, we will focus on the occurrence and regulation of alternative electron flows in unicellular algae and compare data obtained in these systems with those available in vascular plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it