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Monday 16 September 2024

9:00–10:30 Plenary Session (room IV, Chair G. A. D’inverno)

Gabriella Puppo Conference Opening

Stefano Berrone Variational Physics Informed Neural Networks: quadrature rules,

test functions and “a posteriori” error estimates

10:30–11:00 Coffee Break

11:00–13:00 Morning Sessions (room IV, Chair E. Onofri)

Daniele De Sensi [MC] Writing, Benchmarking, and Reproducibility in Research Pa-

pers

Federico Nudo [L] Histopolation via mock-Chebyshev points

Grazia Gargano A multi-factor approach to identify differentially expressed genes

in transcriptome data

11:00–13:00 Morning Sessions (room V, Chair C. Graziani)

G. Alessio D’Inverno [MC] PINA: A Python Software for Scientific Machine Learning

Federico Pichi [L] Graph-based machine learning approaches for model order re-

duction

Veronica Tora Mathematical models on graphs in Alzheimer’s brain

13:00–15:00 Lunch Time

15:00–18:00 Afternoon Sessions (room IV, Chair A. Kushova)

Piero Deidda The Joint Spectral Radius of Neural Networks

Eleonora Maggiorelli An high order AT1 phase-field model for brittle fracture

Lorenzo Zambon [MS] Hierarchical Forecasting (part I)

Break

Lorenzo Zambon [MS] Hierarchical Forecasting (part II)

15:00–18:00 Afternoon Sessions (room V, Chair G. Auricchio)

Laura Girometti A non-convex optimization strategy applied to signal decomposi-

tion

Andrea Perchiazzo Pricing European Options using the Gauss-Laguerre quadrature:

Application to a Compound CARMA(p,q)-Hawkes model

Federico Nudo, Salah

Eddargani

[MS] Recent advances in enriched finite element and isogeometric

analysis (part I)

Break

Federico Nudo, Salah

Eddargani

[MS] Recent advances in enriched finite element and isogeometric

analysis (part II)
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Tuesday 17 September 2024

9:00–10:30 Plenary Session (room IV, Chair G. Alessio D’Inverno)

Org. Committee Day opening

Carla Manni Smooth Splines on Triangulations

10:30–11:00 Coffee Break

11:00–13:00 Morning Sessions (room IV, Chair C. Graziani)

Chiara Lucifora [L] The VERSE platform: eXtended Reality in Education

Alessandro Scagliotti [L] Optimal control of ODEs with dynamics uncertainty

Paolo Zuzolo Spectral features for 3D shape analysis

Anna Sanfilippo Approximate Deconvolution Leray Reduced Order Model

11:00–13:00 Morning Sessions (room V, Chair M. Menci)

Silvia Preda [L] High order semi-Lagrangian schemes and applications

Giulia Tatafiore An efficient semi-Lagrangian scheme for Fokker-Planck equations

on unstructured grids

Davide Torlo Divergence–free preserving schemes: how to fix stabilization

terms in continuous Galerkin for hyperbolic PDEs

Elishan C. Braun Numerical study on parameter effects of a new model for water

penetration in porous media

Ibrahim Almuslimani Explicit stabilized implementation of implicit Runge-Kutta meth-

ods

13:00–15:00 Lunch Time

15:00–18:00 Afternoon Plenary Sessions (room IV, Chair E. Onofri)

Fabrizio M. De Scisci-

olo

[S] VERSE, by Dotslot: Education and Training in the Metaverse;

Italian Innovation for Digital Learning

Filippo Biancone [S] VERSE, by Dotslot: bringing schools to the digital world

Roberta Bianchini (In-)stability in nonhomogeneous density fluids

Break

Org. Committee Organization, General Information, YAMC2025 et al.
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Wednesday 18 September 2024

9:00–10:30 Plenary Session (room IV, Chair A. Marchetti)

Org. Committee Day Opening

Maurizio Parton A Systematization of the Wagner Framework: Graph Theory Con-

jectures and Reinforcement Learning

10:30–11:00 Coffee Break

11:00–13:00 Morning Sessions (room IV, Chair S. Marziali)

Anastasia Istratuca [MC] Multilevel Monte Carlo Methods

Stephan Gerster [L] Feedback control for hyperbolic balance laws

David Mavrodiev Computational Model for Text Optimization: Substantive Reduc-

tion to Improve the Semantic Perception of Information

11:00–13:00 Morning Sessions (room V, Chair G. Auricchio)

Federico Nudo [MC] Cubic and quadratic polynomial enrichments of the

Crouzeix–Raviart finite element

Bruno Degli Espositi [L] Point cloud generation algorithm for 3D domains in B-Rep for-

mat

Simone Milanesi A funnel plot approach for monitoring Antibiotic Resistance in EU

countries based on the WHO GLASS dashboard

13:00–15:00 Lunch Time

15:00–18:00 Afternoon Sessions (room IV, Chair S. Marziali)

G. Alessio D’Inverno [S] The iNEST project

Nella Rotundo [MS] Mathematical Frameworks and Numerical Methods for Com-

plex Physical Systems (part I)

Break

Nella Rotundo [MS] Mathematical Frameworks and Numerical Methods for Com-

plex Physical Systems (part II)

15:00–18:00 Afternoon Sessions (room V, Chair C. Carrara)

Elisa Calzola, Federica

Ferrarese

[MS] Exploring efficient advanced numerical methods for Partial

Differential Equations (part I)

Break

Elisa Calzola, Federica

Ferrarese

[MS] Exploring efficient advanced numerical methods for Partial

Differential Equations (part II)

19:30–23:30 Social Dinner at La Limonaia, Villa Torlonia

Via Lazzaro Spallanzani, 1/A, 00161 Roma
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Thursday 19 September 2024

9:00–10:30 Plenary Session (room IV, Chair E. Onofri)

Org. Committee Day Opening

Roberto Natalini Vector BGK approximations to compressible and incompressible

fluids

10:30–11:00 Coffee Break

11:00–13:00 Morning Sessions (room IV, Chair E. Onofri)

Francesca Ignoto Numerical Computation of Generalized Wasserstein Distances

with Applications to Traffic Model Analysis

Ilaria Ciaramaglia Non-local traffic flow models with time delay: well-posedness and

numerical approximation

Davide Moretti About clustering of time series: A case study using real traffic data

Matteo Piu Mathematical models for multilane traffic flow

Luca Simi Improving Mapper with Metric Trees

Alessandro Ravoni Studying long-lasting diseases using an agent-based model of the

immune response

11:00–13:00 Morning Sessions (room V, Chair G. A. D’Inverno)

Kateryna Morozovska [L] Optimal Sensor Placement in Power Transformers Using

Physics-Informed Neural Networks

Daniel Fakhouri On the expressivity of the ExSpliNet model

Josephine Wester-

mann

Neural Networks vs Sparse Polynomials for Spectral Operator Sur-

rogates

Dimitrios G. Patsatzis Learning Slow Invariant Manifolds with Physics-Informed Neural

Networks

Asli Larbi Αutomatic Character Recognitions Tamahaqt in Amazigh Lan-

guage

13:00–15:00 Lunch Time

15:00–18:00 Free Time
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Friday 20 September 2024

9:00–10:30 Plenary Session (room IV, Chair M. Menci)

Org. Committee Day Opening

Giuseppe Visconti A general framework of implicit high-order schemes for hyperbolic

systems

10:30–11:00 Coffee Break

11:00–14:00 Morning Sessions (room IV, Chair M. Menci)

Vincenzo S. Di Cola,

Fabio V. Difonzo, Gio-

vanni Pagano

[MS] Computational Techniques in Agriculture, Epidemiology, and

Plant Pathology

11:00–12:40 Morning Sessions (room V, Chair C. Carrara)

Domenico Caparello A hierarchical hybrid numerical method for multi-scale Boltzmann

equation with geometry

Tommaso Tenna Projective and Telescopic Projective Integration for the Multi-

species Boltzmann Equation

Eya Zougar Stochastic heat equation in heterogeneous medium

Robin Theriault The Loss Landscape of Dense Associative Memory

Federico M. Quetti A Bayesian Approach to Clustering via the Proper Bayesian Boot-

strap

13:00–15:00 Lunch Time

15:00–18:00 Travel Time
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Preface

The present book collects the long abstracts of 43 out of 46 talks (6 plenary, 3 sponsor,

8 long, and 29 short presentations), 3 out of 4 mini-courses, and 27 out of 29 contributions

in 5 mini-symposia presented and organised during the fourth edition of the “Young Ap-

plied Mathematicians Conference” (YAMC). The conference, held from September 16th

to 20th, 2024, in the historic city of Rome, Italy, was generously hosted by the Depart-

ment of Mathematics “Guido Castelnuovo” at Sapienza, University of Rome.

We are pleased that the conference successfully built upon and replicated the sub-

stantial achievements of its previous editions, continuing to provide a vibrant and inspir-

ing platform for young researchers –primarily PhD students and postdoctoral fellows.

This year’s conference promoted novel collaboration, innovation, and the exchange of

ideas across a wide array of topics. Over the course of five days, we gathered together

78 speakers from 37 universities and research centres across 8 countries (24 from Italy,

5 from France, 3 from Germany, and 1 from Algeria, England, Scotland, Sweden, and

Switzerland respectively), who presented innovative solutions applied to cutting-edge

challenges in applied mathematics.

We were honored to host six esteemed plenary speakers, whose contributions sig-

nificantly enhanced the success of the conference. In particular, we extend our sincere

gratitude to:

Prof. Giuseppe Visconti (Sapienza, University of Rome) for his invaluable assistance

in arranging the conference venue and his determination in overcoming the numerous

obstacles we faced.

Prof. StefanoBerrone (Politecnico di Torino), Prof.saCarlaManni (University of Rome

Tor Vergata), and once again, Prof. Giuseppe Visconti for their commitment to propos-

ing, alongside this book, a special issue in the esteemed Journal of Computational and

Applied Mathematics (JCAM), which will offer a platform for the extension of the works

presented at YAMC.

Director Roberto Natalini (Institute for Applied Mathematics “M. Picone”, IAC–CNR)

for his support in both the venue arrangement and the publication of the present volume.

Regarding this last point, one of the most exciting developments this year was the

publication of all accepted contributions in this collection of long abstracts, curated by

CNR Edizioni. We hope this initiative will become a de facto standard for future editions,

making the research presented at YAMC widely accessible to the global scientific com-

munity. This open-access effort reflects our commitment to disseminating cutting-edge

knowledge and supporting the professional growth of emerging scholars, which has al-

ways been the inspirational driving force behind this event: a conference for young math-

ematicians, organised by young mathematicians.

We extend our heartfelt thanks to all participants, speakers, and organisers whose

dedication and passion made this event possible and laid the foundation for the success

of YAMC. We are also deeply grateful to our sponsors and partners for their invaluable
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support. In particular, we thank Dotslot s.r.l., who not only provided financial assistance

but also helped disseminate the event and showcased their innovative learning technol-

ogy, Verse, which powered the AI assistant for the conference itself.

We hope that YAMC provided a memorable and enriching experience for all atten-

dees, inspiring new ideas, collaborations, and friendships that will continue to flourish

long after the event.

Rome, Italy

September 24th, 2024

Elia Onofri, editor
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In this talk we present VERSE [2], an innovative educational software platform devel-

oped by Dotslot s.r.l.. Entirely designed in Italy, VERSE was born to address the evolving

demands of teaching and learning in the digital era. Leveraging on cutting-edge technolo-

gies and gamification strategies, VERSE aims to revolutionize the educational experience

by providing an engaging, immersive, and personalized learning environment. In partic-

ular, we explore the key components, the technological underpinnings, and the peda-

gogical implications of VERSE, as well as its potential to transform traditional educational

paradigms.

Interactive Learning Environment VERSE offers a comprehensive and interactive learn-

ing environment that integrates advanced multimedia and multisensory experiences. Stu-

dents engage in missions aligned with the school’s curricula, which not only reinforce sub-

ject matter but also foster critical thinking and problem-solving skills. Furthermore, the

platform’s adaptive scoring system provides real-time feedback, enabling a personalized

learning curve that adapts to the individual needs of each individual student. Such a dy-

namic approach is designed to increase student motivation and retention of knowledge

by making learning an active and engaging process.

Comprehensive Teacher Support To enhance the effectiveness of the teaching process,

VERSE provides educators with a robust and innovative set of tools, including detailed

lesson plans, instructional video tutorials, and practical tips tailored to the platform’s

features. These resources, realized under multiple collaborations with the Italian uni-

versities, are intended to ease the integration of digital tools into traditional teaching

methodologies, allowing educators to seamlessly blend physical and virtual classroom

experiences. Finally, the platform includes analytics features that enable teachers to

monitor student progress and tailor instruction accordingly, allowing a more data-driven

approach to education.

Technological Integration and Accessibility VERSE is designed since its birth with a fo-

cus on accessibility and technological integration, supporting a wide range of devices and

platforms, including PCs, tablets, and VR headsets. This cross-platform compatibility en-

sures that the educational content is accessible to a diverse range of learners, regardless
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of their technological resources. By bridging the gap between physical classrooms and

virtual environments, VERSE facilitates the creation of hybrid learning models that can be

adapted to various educational contexts, from primary schools to higher education and

beyond, and can help filling the physical distances that might arise due to critical situa-

tions, like e.g. the sadly well-known lockdown.

Customizable Virtual Labs (VERSE Labs) One of the distinctive features of VERSE is its

customizable virtual laboratories, known as VERSE Labs. These labs are specifically de-

signed to support experiential learning in various disciplines, including languages, natu-

ral sciences, robotics, food science, and the arts. VERSE Labs enable students to engage

in hands-on, practical learning experiences that complement theoretical knowledge that

can be driven in safe environments, like, e.g., a chemistry laboratory. The labs are de-

signed to be flexible and scalable, allowing educators to modify content and experiments

to suit different educational levels and objectives.

Cooperative and Peer-to-Peer Learning VERSE promotes cooperative learning by facil-

itating the formation of peer-to-peer study groups within its virtual environment. These

groups can engage in collaborative projects, discussions, and problem-solving activities,

mirroring the dynamics of real-world teamwork. The platform’s flexibility allows it to be

tailored to the unique needs of different learning communities, making it an ideal tool

for fostering a collaborative learning culture that prepares students for the demands of

modern work environments.

Facilitating the School-to-Work Transition In addition to its educational applications,

VERSE is designed to support the transition from school to the workforce by equipping

students with practical, job-ready skills. The platform emphasizes the development of

soft skills such as logical reasoning and the ability to contextualize information—qualities

that are increasingly valued in the modern labor market. By providing students with a

simulated work environment, VERSE helps bridge the gap between academic learning

and professional application, thereby enhancing employability and career readiness.

Strategic Technological Partnerships In order to further enrich its educational ecosys-

tem, VERSE has established strategic partnerships with leading technology providers, in-

cluding Promethean (Digital Board, [4]), Convai (Conversational AI, [1]), and Labster (3D

simulations, [3]). These collaborations allow VERSE to integrate state-of-the-art tech-

nologies into its platform, offering users an enhanced educational experience that is both

cutting-edge and deeply immersive. These partnerships are crucial in ensuring that VERSE

remains at the forefront of educational innovation, continually adapting to emerging

technological trends and educational needs.

Conclusion VERSE represents a significant leap forward in the field of educational tech-

nology, combining advanced digital tools with innovative pedagogical strategies to cre-
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ate a transformative learning experience. By merging the physical and virtual worlds,

VERSE not only enhances the traditional classroom setting but also prepares students for

the challenges of a rapidly changing digital landscape. As educational institutions world-

wide seek to modernize and adapt to the digital age, VERSE stands out as a pioneering

solution that is poised to shape the future of education.

References
[1] Convai Tech. Embodied AI Characters For Virtual Worlds. URL: https://convai.co

m.

[2] Dotslot s.r.l. VERSE: Istruzione e Formazione nel Metaverso. URL: http://dotslot
.it.

[3] Labster A.p.s. Virtual Labs for Universities and High Schools. URL: https://labste
r.com.

[4] Mind Ai. Promethean: The all-new ActivPanel. URL: https://prometheanworld.c
om/en/.
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We present VERSE [2], an innovative education software platform developed by Dot-

slot s.r.l.. Dotslot is a social enterprise committed to revolutionizing the education sector

through software development, training for individuals and organizations, research and

AI. The company is currently cooperating with the National Research Council and the Uni-

versities of Bari, Florence, la Sapienza, and Roma Tre by funding doctorates and research

positions. Dotslot’s mission is to provide innovative software solutions and training op-

portunities with the aim of

• Support professional development

• Provide people with easy access to knowledge.

• Ease the transition of Italian schools towards a digitally driven world.

About VERSE
Verse is a multi-platform software committed to offering an engaging learning experi-

ence for students of all ages that is also intuitive for teachers to use. It contains a 3D

digital school through which students and teachers can freely explore 3D spaces in a cre-

ative way, easily accessible digital labs and activities, and interact with conversational AI

avatars.

The primary goal
VERSE’s primary goal is to create a more accessible, efficient, and future-ready educa-

tional environment that adapts to the constant technological advancements, ensuring

both students and educators can thrive in a digitally driven world. In order to reach this

goal, our work focusses on two main aspects:

Accessibility: to be accessible to all students, VERSE offers an expanding catalogue of

digital labs with many options for customization. This allows teachers to adapt the

experience to their students’ needs. They can also create their own custom con-

versational AI avatars that can be interacted with through both text and speech in

up to 24 languages.

Efficiency: VERSE allows students to integrate their knowledge using digital exercises

and labs while also balancing education with entertainment, creating an optimal
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learning environment. Teachers will also be able to easily switch between and, in

future, keep track of their classes’ activities and progress to better organize their

lessons.

The main industrial partners
In the following, we describe two of our principal industrial partners which allow us reach-

ing the previously described goals:

Labster [3] is a company specialized in the development of advanced interactive simu-

lations of scientific labs, each of which is designed for educational and research

purposes. As of now, the simulations that are available on our software cover bi-

ology, chemistry and physics and allow users to interact with a 3D digital lab while

also submitting them to multiple choice quizzes that keep track of their progress.

Convai [1] lends its conversational AI, allowing users to create their own custom avatars

that can provide highly adaptable and engaging experiences, for entertainment

and/or for educational purposes. It’s also possible to “train” these avatars on one

or more desired subjects by simply loading a text file onto their knowledge bank.

The principal contents
In what follows, we describe the wide range of possible activities VERSE offers for teach-

ers and students.

Educational digital labs: VERSE offers a growing collection of educational labs, each of

which is designed to entertain and challenge students across all subjects in the Ital-

ian school curriculum. The lab content can be either generated by AI or created/ver-

ified by subject matter experts.

Arenas: Users can explore an expanding selection of 3D environments called “Arena”s,

where they can instantiate conversational AI avatars, 3D models, and digital black-

boards that can be filled out with either text or images to allow (i) students to fully

express their creativity and (ii) teachers to design fun and interactive lessons. In fu-

ture, it will also be possible to engage with themed 3D activities within each Arena.

AI quizzes: Users can generate multiple-choice quizzes on a topic of their choice with

varying difficulty using AI. Each quiz consists of 10 questions and allows the user to

review their answers, giving the teacher the ability to review results, identify areas

for improvement, and adjust the lesson according to the students’ needs.

Future work
VERSE is a living organism that keeps evolving and expanding its features day-by-day. In

particular, the ongoing collaboration with the University structures allows us bringing

new digital activities that can be useful to the Italian school portfolio, while also creating

new Arenas and instantiable 3D models for users to use in the 3D spaces. Furthermore,

as previously mentioned, we will soon develop 3D themed activities that can be engaged
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within the Arenas themselves. Finally, we also plan on integrating within the VERSE plat-

forms an AI chatbot (ZunoAI) that students and teachers can interact with whenever they

feel the need to.

Conclusions
VERSE aims to significantly impact the education sector by providing a versatile, innova-

tive, and interactive platform that supports both students and educators. By focusing

on accessibility and efficiency, VERSE enhances the learning experience through its 3D

digital environments, AI-driven features, and customizable educational labs. Its collabo-

ration with esteemed institutions and industrial partners like Labster and Convai further

strengthens its ability to offer novel engaging educational tools.

Looking forward, VERSE will continue evolving to meet the needs of the digital learn-

ing landscape. With plans to expand its 3D environments, add themed activities, and

integrate advanced AI capabilities, VERSE remains committed to supporting the profes-

sional development of educators and improving the accessibility of knowledge for stu-

dents. This dynamic and forward-thinking platform is well-positioned to play a key role in

the digital transformation of Italian schools and beyond, ensuring that education is both

engaging and future-ready.
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iNEST: an Ecosystem for Innovation
Innovation Ecosystems are networks of Universities, Public Research Institutions, Territo-

rial Institutions and Companies. Such Ecosystems are active in technology specialization

areas which are coherent with territorial industrial & research missions, and promote and

strengthen cooperation among Research, Economic players and Institutions. Ecosystems

add value to research outcomes, make easier technology transfer and digital transforma-

tion of companies and related processes, taking care of economic and environmental

sustainability and of social impacts.

The iNEST Project aims to define a new Innovation Ecosystem paradigm, based on:

• multi-vocationality;

• ability to generate added value through an integrated and interconnected approach,

overcoming

• the risks of fragmentation;

• networking, with a partnership-based approach.

The key tools for the development of this new paradigm are:

• information and communication technologies (ICT) and digitisation;

• innovative technologies for the well-being of people, the diffusion of culture and

growth economic and entrepreneurial.

The iNEST project is located in the north-east of Italy, in a region characterized by:

• Strong territorial background (Historical, social, cultural), as driving force for coop-

eration;

• Key-area for Italian economy: 12% of people, 14% of GNP, 20% of Italian export;

• Variety of vocations, from industry to tourism and cultural heritage;

• Hign number of interconnections, well represented by Smart Specialization Strate-

gies;
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Digital Twins: from mathematics, a catalyst for innovation
A dramatic shift is on the horizon in modern economics, and at its core lies the transforma-

tive force of digitalization. This revolutionary process allows for the constant optimiza-

tion of processes and substantial cost savings, hence marking the beginning of a new era

of efficiency across industries. Digitalization is a pillar of the iNEST Consortium: it is the

key for industries in North-Eastern Italy to establish themselves as efficiency models and

innovation drivers.

At the forefront of this digital revolution stands the visionary concept of the Digital

Twin (DT), the virtual replica of a real-world product or process. iNEST Spoke 9 dedicates

all its research efforts to the development of Digital Twins and their application across

diverse fields. Yet, to truly harness their potential, a deep understanding of the under-

lying behaviors and functions of their real-world counterparts is essential. In the quest

to create accurate Digital Twins, scientists wield sophisticated tools of mathematical and

numerical modeling. Real-time data flows between physical objects and virtual replicas

facilitate constant communication and refinement. To ensure ever-closer alignment be-

tween DTs and their real counterparts, invaluable support is provided by mathematical

and numerical tools such as Reduced Order Models and Uncertainty Quantification tech-

niques.
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Recent advances in artificial intelligence, particularly in deep learning, have driven the

development of several innovative numerical techniques for solving partial differential

equations (PDEs). These methods approximate solutions by training neural networks

that leverage the knowledge of the underlying differential equations. One of the earliest

models employing a neural network was described in [9], which introduced the concept

of Physics-Informed Neural Networks (PINNs). This work inspired subsequent studies,

such as [10] and [11], culminating in the recent paper [8], which presents a comprehen-

sive framework for solving operator equations using deep neural networks. Approxima-

tion properties of PINN solutions can be evaluated [4, 7]. The PINN paradigm was fur-

ther refined in [5] to develop Variational Physics-Informed Neural Networks (VPINNs).

Key differences from PINNs include the use of the weak formulation of the PDE, replac-

ing collocation points with test functions, and employing quadrature points to compute

the integrals involved in the variational residuals. In this method, the solution is still ap-

proximated by a neural network, but the test functions are represented by either a finite

set of known functions or a secondary neural network (see [6]), making the technique a

variant of the Petrov-Galerkin method.

In [3], we examine the impact of varying the precision of quadrature rules and the de-

grees of piecewise polynomial test functions on the convergence rate of VPINNs when ad-

dressing elliptic boundary-value problems through mesh refinement. Utilizing a Petrov-

Galerkin framework, we derive an “a priori” error estimate in the energy norm. The pro-

posed interpolation operator is crucial for obtaining an inf-sup stable method and elimi-

nating spurious modes from the neural network’s output. Counterintuitively, our results

suggest that for smooth solutions, the optimal approach for achieving rapid error decay

is to use test functions with the lowest polynomial degree while employing highly pre-

cise quadrature formulas. Specifically, for sufficiently smooth solutions, the error decay

rate is determined by q + 2−ktest, where q is the polynomial degree of the quadrature

formula and ktest is the local polynomial degree of the test functions. Numerical experi-

ments validate our theoretical predictions. The error between the exact solution and the

approximated solution represented by the computed neural network decays asymptoti-

cally at the same rate as predicted by our theory for the network’s interpolant. However,

this behavior cannot be rigorously guaranteed in general without the use of the interpo-

lation operator, as the minimization problem defining the computed neural network is
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generally underdetermined, potentially leading to spurious components. Indeed, for a

problem with zero boundary conditions and right hand side, minimizing the loss function

may result in non-vanishing neural networks. The method proposed in [3] combines the

efficiency of the VPINN approach with a rigorous convergence analysis.

In [2], we define a computable residual-type ”a posteriori” error estimator and prove

its reliability and efficiency in controlling the energy error between the exact solution and

the VPINN solution. In our estimates, the global error is upper-bounded by a constant

multiple of the estimator (reliability), moreover the estimator does not overestimate the

energy error, as the latter is lower-bounded by a constant multiple of the former (effi-

ciency), up to data oscillation terms. Reliability is connected to the possibility of refining

the test space by adding test functions whose support is located where the estimator is

large (refining the mesh of the test functions) to improve the solution, whereas efficiency

could be used to coarsen the test space by removing functions with support in regions

where the estimator is small (coarsening the mesh).

The proposed estimator is the sum of several terms: a classical residual-type estima-

tor similar to that used in finite elements, which measures the residual of the strong form

of the differential equation when the solution is replaced by the VPINN and the inter-

element gradient jumps; a term accounting for the magnitude of the loss function after

minimization; and additional terms measuring data oscillations, i.e., the errors resulting

from locally projecting the equation’s coefficients and right-hand side onto suitable poly-

nomial spaces. The estimator can be expressed as a sum of elemental contributions (local

in space), enabling its use within an adaptive discretization strategy that refines the ele-

ments contributing the most to the estimator.

Dirichlet boundary conditions can significantly influence the behavior of VPINNs, par-

ticularly in the presence of highly complex geometries. In [1] a comprehensive explo-

ration of distinct approaches for enforcing Dirichlet boundary conditions in PINNs and

VPINNs is performed.
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The following system describes the evolution of non-homogeneous incompressible

flows under the influence of gravity:

∂tρ+ u · ∇xρ+ w∂zρ = 0,

ρ
(
∂tu+ u · ∇xu+ w∂zu

)
= −∇xP,

ρ
(
∂tw + u · ∇xw + w∂zw

)
= −∂zP − gρ,

∇x · u+ ∂zw = 0,

P |z=ζ = Patm, w|z=−H = 0.

(6.1)

Here, t denotes time, and (x, z) are horizontal and vertical spatial coordinates. The

operators∇x,∇x·, and∆x represent the gradient, divergence, and Laplacian with respect

to x, respectively. The unknowns are the velocity field (u, w) ∈ R2 × R (horizontal and

vertical components), the density ρ > 0, and the pressure P ∈ R, all depending on

(t, x, z). In general, the spatial domain Ωt is bounded by a free surface:

Ωt = {(x, z) : x ∈ R2,−H < z < ζ(t, x)},

where H is the resting depth, and the free surface ζ(t, x) evolves according to the kine-

matic boundary condition

∂tζ + u|z=ζ · ∇xζ − w|z=ζ = 0,

which ensures that fluid particles remain on the surface. The gravitational field is as-

sumed constant and vertical, with g > 0 denoting the acceleration due to gravity. The

atmospheric pressure at the surface is given by P |z=ζ = Patm. In shallow water flows,

particularly in coastal oceanography (see [5]), where the depth is much smaller than the

horizontal scale, inertial terms in the vertical momentum equation can be neglected. In

this regime, the pressure P approximately satisfies the hydrostatic balance law:

∂zP + gρ = 0. (6.2)

Replacing the vertical momentum equation with the hydrostatic balance law (6.2) yields
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the hydrostatic equations:

∂tρ+ u · ∇xρ+ w∂zρ = 0,

ρ
(
∂tu+ u · ∇xu+ w∂zu

)
= −∇xP,

∂tζ + u|z=ζ · ∇xζ − w|z=ζ = 0,

∇x · u+ ∂zw = 0,

P = Patm + g

∫ ζ

z

ρ(z′, ·) dz′, w = −
∫ z

−H

∇x · u(z′, ·) dz′.

(6.3)

In this hydrostatic regime, there is no explicit evolution equation for the vertical veloc-

ity, which must instead be derived from the incompressibility condition. This aspect is

central to the mathematical challenges encountered in the hydrostatic limit. Addition-

ally, there is a strong connection to the inviscid primitive equations, as discussed in [4].

The hydrostatic approximation can be further clarified by introducing the non-dimensional

shallowness parameter ε2 := H2

L2 ,which represents the ratio of the depthH to the typical

horizontal scale L, with L� H or 0 < ε� 1, and the dimensionless quantities:

x̃ :=
x

L
, z̃ :=

z

H
, t̃ :=

√
gH

L
t, ũ :=

u√
gH

, w̃ :=
L

H

w√
gH

, P̃ :=
P

gH
, ζ̃ :=

ζ

H
,

so that, dropping the tildes, Eqs. (6.1) become

∂tρ+ u · ∇xρ+ w∂zρ = 0,

ρ
(
∂tu+ u · ∇xu+ w∂zu

)
= −∇xP,

ε2ρ
(
∂tw + u · ∇xw + w∂zw

)
= −∂zP − ρ,

∂tζ + u|z=ζ · ∇xζ − w|z=ζ = 0,

∇x · u+ ∂zw = 0,

with the boundary conditions

P |z=ζ = Patm, w|z=−1 = 0.

Heuristically, taking the limit ε→ 0 leads to Eq. (6.2) and thus to the hydrostatic equations

(6.3). This limit can be understood as a long-wave asymptotic and is also related to the

long-time dynamics of the original system (6.1).

Mathematically, the main challenges are the study of the well-posedness of the limit-

ing system (6.3) and its rigorous derivation as ε→ 0. Recently, a proof of well-posedness

with isopycnal diffusivity or Gent-McWilliams correctors [3], establishing the validity of

the hydrostatic (or shallow water) approximation, has been provided in [2]. On the other

hand, in the fully inviscid and non-diffusive regime, an explicit steady state has been iden-

tified that is unstable according to the Miles-Howard criterion, allowing the breakdown

of the hydrostatic limit to be proven. This leads to the generic ill-posedness of the limiting

hydrostatic equations in finite regularity spaces, as shown in [1].
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Splines are ubiquitous in a wide range of contexts such as geometric modeling, signal

processing, data analysis, visualization, and solution of partial differential equations by

the finite-element method, including the isogeometric analysis paradigm. In the classical

sense of the term, splines are piecewise functions consisting of polynomial pieces glued

together smoothly by imposing equality of derivatives up to a given order. For many ap-

plications, a high smooth join between the different pieces is beneficial or even required.

In the univariate case, splines of maximal smoothness, i.e., piecewise polynomials of

degree dwithCd−1 joins, are probably the best known and most used splines [7]. Tensor-

product splines are the simplest and most well-known multivariate spline functions. Their

tensor structure, however, is a severe weakness as it hinders adequate local refinement.

Splines on triangulations emerge as the natural and most powerful bivariate extension of

univariate splines.

The space of splines of degree d and smoothness r over a triangulation T of a domain

Ω is

Srd(T ) := {s ∈ Cr(Ω) : s
∣∣
∆
∈ Pd, ∀∆ ∈ T }, 0 ≤ r < d,

where ∆ denotes any triangle of T and Pd stands for the space of bivariate polynomi-

als of degree up to d. Dealing with highly smooth splines on triangulations is an arduous

task. Splines with too low degree compared to the smoothness are exposed to several

shortcomings: they may lack a stable dimension, optimal approximation power, and sta-

ble locally supported bases. In addition, the practical wish of constructing any function of

the spline space locally on each of the elements of the partition may require a significant

gap between the degree and the smoothness. For instance, on a general triangulation a

degree d ≥ 4r + 1 is necessary to admit such a local construction [1, 6, 14].

The above drawbacks can be mitigated by considering a so-called macro-structure,

where each triangle ∆ of T is further refined in a specific manner (often referred to as

split). The most famous examples are the Clough–Tocher split [1, 2, 6, 12] and the Powell–

Sabin 6 and 12 splits [6, 11, 12]. They subdivide each triangle of T into 3, 6, and 12 subtrian-

gles, respectively. Nevertheless, no spline spaces of maximal smoothness r = d− 1 can

be constructed over general triangulations with the above mentioned splits for degree

d > 2; see, e.g., [6].

In [13], Wang and Shi introduced a family of degree-dependent splitting schemes to re-

fine any triangle ∆ of a given triangulation. The split of degree d is obtained by uniformly

distributing d+1 points on each edge of∆ and by taking the complete graph connecting

these boundary points. For d = 1 we have no split and for d = 2 the Wang–Shi (WS)
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Figure 7.1: WS splits of degree d for d = 2, 3, 4.

split reduces to the Powell–Sabin 12 split; see Figure 7.1. Contrarily to the well-known

splits mentioned above, when d increases, the family of WS splits generates a very large

number of polygonal pieces in each triangle of T . For cubics we get a set of 75 poly-

gons which includes triangles, quadrilaterals, and pentagons while for quartics the split

consists of 250 polygonal regions; see Figure 7.1.

Thanks the very articulated geometry of the split, the cubic/quartic WS splits allow us

to locally construct C2 cubic / C3 quartic spline spaces on general triangulations. On the

other hand, this complex geometry hampers a piecewise treatment – in terms of a local

polynomial basis – of spline functions on WS splits and makes imperative to produce a

basis for the local spline space over each refined triangle ∆ of T that intrinsically avoids

the need of dealing with separate polynomial representations on each of the numerous

polygonal subelements of∆. Due to the complete graph structure of the WS split, a basis

formed by simplex splines emerges as the natural solution to the problem [10].

Simplex spline bases for the local spaces of C2 cubics and of C3 quartics on the cor-

responding WS splits of any triangle in T have been presented in [8, 9]. Such bases be-

have like a B-spline basis within each triangle of T and like a Bernstein basis for imposing

smoothness across the edges of T . More precisely, the basis functions form a nonnega-

tive partition of unity, inherit recurrence relations and differentiation formulas from the

simplex spline structure, and enjoy a Marsden-like identity for the representation of cu-

bic and quartic polynomials respectively. Moreover, they admit simple conditions forCr

joins r = 2, 3 to neighboring triangles in T and a control net can be set up that mimics

the shape of the spline function. A simplex spline basis for C1 quadratic splines on the

Powell–Sabin 12 split has been considered in [3]. The local representation in terms of such

simplex spline bases makes that the complex geometry of the WS split is transparent to

the user, offering a pathway for effective use of the related spline space.

In this talk, we review the main issues concerning construction, and efficient repre-

sentations in terms of proper bases, of highly smooth splines on general triangulations

where each element is refined according to the WS split [8, 9] and we briefly discuss some

applications of these splines spaces [5] in the context of Isogeometric Analysis [4], a suc-

cessful paradigm for the numerical discretization of differential problems.
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In 2021, Adam Zsolt Wagner proposed an approach to disprove conjectures in graph

theory using Reinforcement Learning (RL) [2]. Wagner frames a conjecture as f(G) <
0 for every graph G, for a certain invariant f ; one can then play a single-player graph-

building game, where at each turn the player decides whether to add an edge or not.

The game ends when all edges have been considered, resulting in a certain graph GT ,

and f(GT ) is the final score of the game; RL is then used to maximize this score. This

brilliant idea is as simple as innovative, and it lends itself to systematic generalization.

Several different single-player graph-building games can be employed, along with various

RL algorithms. Moreover, RL maximizes the cumulative reward, allowing for step-by-step

rewards instead of a single final score, provided the final cumulative reward represents

the quantity of interest f(GT ). In this abstract, we briefly present three distinct single-

player “build your graph” games: Linear, Local, Global. Each game employs both a step-

by-step reward system and a single final score. The games have been implemented as

environments in the Gymnasium framework, and along with the dataset and a simple

interface to play with the environments, are available at https://github.com/Curio
sAI/graph_conjectures.

All games are played on undirected graphs with a fixed number n of nodes, and with-

out multiple edges. The environments are parametric with respect to several aspects: for

instance, one can choose the starting graph, or whether to enforce the agent excluding

self-loops.

Linear
Linear is a variation of the game used by Wagner. The name comes from the state’s vector

internal representation. In Linear, edges are ordered, and then at each time t the agent

can choose between leaving the edge number t as it is (i.e. passing it), or flipping it. The

Edge-flipping operation (as defined in [1]) changes the state of an edge like a boolean not

operator, as follows: let e ∈ {0, 1} be the single bit representing the edge, then

flip(e) =

{
1 if e = 0

0 otherwise

The state is given by the graph and the current time t, and the action space is {0, 1},
where 0 means that the current edge is left unchanged, and 1 that the edge is flipped.
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With its default values, Linear differs from Wagner’s game for the ordering of the edges:

in Wagner’s game, edges are numbered by forming and expanding cliques first, that is,

(1, 2), (1, 3), (2, 3), (1, 4), . . . , while in Linear is given by (1, 2), (1, 3), . . . , (1, n), (2, 3), . . . .
Moreover, Wagner starts from the empty graph, while the default setting in our games

is to start from the complete graph. Episodes in Linear always end at time T = n(n−1)
2 , if

self-loops are not allowed, and at time T = n(n+1)
2 , otherwise.

Local
In Local, the agent explores the graph space by moving from one node to another. When

moving from node i to node j, the agent has the option either to flip the edge (i, j) or

to pass it. This ensures that from node i, the agent’s actions are “locally” confined, im-

pacting only the directly connected edge (i, j). Note that this is different from Linear,

because the agent can choose any node j to move to. The state is given by the current

graph, the current node i where the agent is located, and the current time. An action

is given by a target node j to move to from node i, and a binary value {0, 1}, where 0
means taking no action, and 1 means flipping the edge (i, j). In our implementation, this

action logic is represented by a single integer value kwithin the range [0, 2n−1]where n
is the number of nodes. Assuming to start from node i, if k ∈ [0, n−1], we move to node

j = k without taking any action on edge (i, j). If k ∈ [n, 2n− 1], we move to node j = k
mod n, and the edge (i, j) is flipped. Episodes in Local end at a termination time T that

can be passed as optional input when the game is initialized, and defaults to T = n(n−1)
2 ,

if self-loops are not allowed, and to T = n(n+1)
2 , otherwise.

Global
In Global, the agent explores the graph space by acting on any edge across the entire

graph at any time. The agent can choose any edge to act upon, deciding either to flip it

or to pass it. This “global” approach ensures that the agent’s actions are not confined to

its immediate location, allowing interaction with any part of the graph. Episodes end at

a termination time T that can be given as input at game’s initialization, with same Local

defaults. Similar to Local, the possibility to pass on an action without flipping an edge

is maintained, because it helps mitigate the risk of choosing a wrong termination time

for the game. For instance, if flipping were mandatory, excessively long matches could

potentially disrupt an optimal configuration previously achieved. Allowing the passing of

actions enables the agent to maintain an optimal configuration indefinitely. The state is

given by the current graph, and the current time. An action is given by a target edge, and a

binary value {0, 1}, where 0means taking no action, and 1means flipping the edge. In our

implementation, the action logic is similar to that seen in Local, but generalized to handle

global movements along the graph. Here, the action is represented by a single integer

value k within the range [0, 2m − 1], where m is the number of edges. If k ∈ [0,m − 1],
edge (i, j), where i =

⌊
k
n

⌋
and j = k mod m, remains unchanged. If k ∈ [m, 2m − 1],

edge (i, j), where i =
⌊
k−m
n

⌋
and j = k mod m is flipped.
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In this talk, we consider systems ofm ≥ 1 hyperbolic conservation laws:

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (9.1)

where, u : R×R+
0 → Rm is the quantity of interest, and f : Rm → Rm is the vector of the

flux functions. System (9.1) is hyperbolic when the eigenvalues {λj(u(x, t))}mj=1 of the

associated Jacobian matrix are real and determine a complete set of eigenvectors. Phe-

nomena governed by hyperbolic conservation laws often exhibit multiple scales, which

are associated with the eigenvalues of the Jacobian of the flux function. Specifically, one

has
maxj=1,...,m |λj(u)|
minj=1,...,m |λj(u)| � 1. In this case, we say that the system is stiff.

Numerical methods for solving hyperbolic problems are frequently explicit, as these

methods are capable of resolving all relevant scales in many applications. For example,

in gas-dynamics, explicit methods can accurately capture both convective and acoustic

waves. However, integrating a system of hyperbolic equations with an explicit numerical

scheme requires choosing the time-step as∆t = min(∆tacc,∆tstab), where∆tacc is deter-

mined by accuracy constraints, and ∆tstab is constrained by the stability condition, which

is related to the inverse of the fastest scale in the system. Therefore, the stability re-

quirements of explicit methods can become overly restrictive, i.e. ∆tstab � ∆tacc, when

fast acoustic waves are present. In such scenarios, implicit methods become appealing,

as they are not constrained by stability conditions and thus allow for larger time-steps

despite requiring more computational effort per step.

Another cornerstone for the numerical integration of (9.1) is achieving high-order.

First-order schemes are entirely linear, with the only non-linearity stemming from the non-

linear flux function, which is inherent to the model’s physical structure and thus unavoid-

able. However, these schemes tend to produce significant dissipation errors. To enhance

the accuracy of the scheme, it is essential to employ higher-order methods, which involve

piecewise polynomial reconstructions in space and a corresponding high-order time inte-

gration method. Although high-order schemes can address the low resolution of first-

order methods, they typically necessitate the use of spatial limiting to prevent spurious

oscillations. This spatial limiting process introduces additional significant non-linearity,

which becomes a computational challenge, particularly when using implicit methods due

to the large nonlinear systems that must be solved at each time-step.

We are concerned with the challenges of developing efficient high-order implicit sche-
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mes for stiff hyperbolic systems. The key idea is to remain as linear as possible while

avoiding spurious oscillations, even with large time-steps.

In our proposed approach [5, 6, 8], we initially apply implicit integration using the

backward Euler method with a piecewise constant reconstruction. This step generates an

initial estimate of the solution at a given time t, which we refer to as the predictor u?(t).
It is well established that the backward Euler method, when combined with piecewise

constant reconstruction, produces a solution that is unconditionally stable and TVD. As

a result, the predictor inherits these properties. However, this approach also leads to a

solution that is highly diffusive, as discussed above. In this talk, to enhance the accuracy

avoiding spurious oscillations, we propose to pre-compute the non-linearity of the space-

limiting procedure of the high-order scheme using the predictor. In this way, the resulting

implicit scheme is nonlinear only because of the non-linearity of the flux function.

So far, this approach has been tailored to the third-order implicit finite volume approx-

imation. Specifically, we adopt a third-order Diagonally Implicit Runge-Kutta (DIRK) for

the time-integration and the CWENO reconstruction in [7] for the space approximation.

CWENO constructs a local polynomial within each cell

Rj(x; t) =
∑
`∈S

ωj+`(uS(t))uj+`(t).

Here, j represents a general spatial cell, while S defines the stencil centered on cell j,
which is used for reconstruction. The variable uS encompasses all the data within the

stencil associated with the j-th cell, anduj+`(t) represents the solution being determined

at time t. The nonlinear weights ωj+` are calculated by assessing the local smoothness

of the solution based on the data uS contained within the stencil of the j-th cell. By using

the predictor to estimate the nonlinear weights, the reconstruction becomes

Rj(x; t) =
∑
`∈S

ωj+`(u
?
S(t))uj+`(t).

In this approach, the weights are determined using information from the predictor at

the correct time level, ensuring that the reconstruction remains linear in relation to the

solution being computed. Following this, a high-order implicit time integrator, such as a

DIRK method, is applied. The resulting solution is both high-order accurate and free from

spatial oscillations, while retaining linearity for linear problems. Any non-linearity in the

solution arises solely from the non-linearity inherent in the flux function.

Even with spatial limiting, spurious oscillations can still occur during implicit integra-

tion, particularly at high Courant numbers. To mitigate these oscillations in implicit time

integration - where large time-steps can cause waves to traverse multiple adjacent cells

in a single step - we consider the application of time-limiting techniques. Specifically, flux-

based conservative time-limiting methods, inspired by the MOOD approach [1, 2], are uti-

lized. These methods replace the high-order numerical fluxes at the interfaces of prob-

lematic cells with low-order fluxes, using the numerical entropy production error [3, 4] as

an indicator of non-smooth regions in the solution.
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Several numerical results on the nonlinear Euler equations of gas dynamics are pre-

sented.
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Despite great advances in mesh generation algorithms, one of the most challenging

and time consuming parts of mesh-based numerical simulation on geometrically complex

3D domains remains to this day the generation and management of meshes [4]. An in-

creasingly popular alternative approach to numerical simulation that avoids the issue of

mesh generation entirely is that of meshless (or meshfree) methods, in which approx-

imations of unknown functions are determined exclusively from pointwise values at a

scattered set of nodes. The step of mesh generation is replaced by the generation of a

point cloud, and this provides a strong motivation for studying robust and efficient ways

of generating scattered nodes with prescribed density over arbitrary domains in R3 [10].

Although the topic of point cloud generation has been an active area of research for

more than 20 years [5], interest has recently grown, as demonstrated by three different

algorithms being published by distinct research groups in the last five years, along with

corresponding open source implementations [3, 7, 8].

All three algorithms can handle 3D geometries and are based on the advancing front

method, which works in two stages. First, a set of nodes is placed on the boundary of

the domain, and outward-pointing surface normal vectors are computed at these points.

Second, boundary points act as an initial front, and the front is advanced towards the

interior of the domain, in the direction opposite to the normal vectors. Newly generated

interior points are used as sources to create another set of interior points, until the whole

domain is filled. A local node spacing function is used when generating new nodes, and

also when rejecting nodes based on their distance to nearest neighbour, so that in the

end a node distribution with a prescribed density is obtained.

Traditional Computer-Aided Engineering workflows rely on simulations on meshes gen-

erated from CAD geometries, and the standard format in CAD is boundary representation

(B-Rep). From a mathematical point of view, a B-Rep is the description of the boundary of

a 3D domain as a finite union of parametric surfaces called patches, along with connectiv-

ity information and trimming curves in the parametric domain of each patch. Trimming

curves are closed simple curves that enclose regions in parametric space whose image

in 3D space is excluded from the patch, and, hence, from the boundary of the domain.

Trimming is treated by all CAD kernels as one of the most fundamental operations that

allows the construction of complex geometries, although its use comes at a price, such

as the introduction of small gaps and overlaps between patches caused by the inevitable

approximation of trimming curves [6].

To this day, only commercial software packages for meshless simulations provide ad-
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vancing front methods on B-Rep geometries, and no detailed studies have been published

on this subject [10]. On the contrary, the problem of mesh generation from CAD geome-

tries has been studied extensively, and today mature open source software exists for

this task, such as gmsh [2]. This is the reason why, even today, a large share of meshless

literature paradoxically uses the vertices of a mesh as the point cloud for meshless meth-

ods, and this can lead to the misconception that point cloud generation is as computa-

tionally intensive and algorithmically complex as mesh generation, even though meshless

advancing front algorithms are an order of magnitude faster than advancing front mesh

generation algorithms [5].

In this talk, we aim to bridge the gap in literature and algorithms by describing a vari-

able density advancing front method specifically designed for domains in R3 in B-Rep

format. Our work overcomes two key issues.

First, nodes must be placed on the boundary of a domain taking trimming into ac-

count. Rather than generating nodes over the whole parametric domain of each patch

and discarding nodes enclosed by trimming curves, we propose to generate nodes in

parametric space with a 2D advancing front algorithm, using equispaced nodes on trim-

ming curves as the boundary nodes for this inner advancing front algorithm. The image

of interior nodes produced by the 2D advancing front algorithm will then contribute to

the set of boundary nodes for the 3D advancing front algorithm.

Second, generation of interior nodes for an advancing front algorithm requires a con-

tainment query to check whether newly generated points belong to the domain or not.

Although containment queries can be answered exactly (up to machine precision) using

ray casting or generalised winding number algorithms, such methods are impractical in

this setting because of their high computational cost (although it could be reduced, see

[9] for the case of 2D domains). Instead, a cheaper containment check based on normal

vectors orientation and nearest-neighbour boundary node search is usually employed,

although this technique is only accurate to first order and can sometimes lead to points

being generated outside of the domain.

We propose a more robust first-order containment query that prevents artefacts in

the generation of points near sharp features of the domain’s boundary caused by incor-

rect advancement of the point cloud front. We remark that point clouds generated by

advancing front methods using approximate containment queries do not limit the order

of convergence of meshless numerical methods.

Our implementation consists of a C++ library, along with a MATLAB interface, and

builds upon the advancing front algorithm described in [1]. The necessary tools to work

with domains in B-Rep format are provided by the Open CASCADE CAD kernel. The ef-

fectiveness of our node generation algorithm is demonstrated by numerical experiments

such as the solution of partial differential equations on 3D geometries in B-Rep format

using a meshless method.
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Extended Reality (XR) is a broad term that refers to technologies capable of extend-

ing the boundaries of the real world. Amongst the most used XR technologies we find [8]

(i) Virtual Reality (VR), which comprises a fully artificial environment where users can in-

teract with 3D objects, and (ii) Augmented Reality (AR), which is a partially artificial en-

vironment that overlays virtual objects onto the real world. Such technologies promise

important advantages capable of revolutionizing many scientific fields [3].

Concerning education, VR and AR technologies have been increasingly adopted to

enhance student learning [5]. For instance, the study of mathematics has received im-

portant benefits from VR technologies, as it enables the transformation of abstract con-

cept into tangible and interactive elements [11]. In this context, Su et al. [12] conducted a

study with 40 students using immersive technologies to learn basic geometry concepts;

results showed that virtual reality technologies improve students’ learning motivation

and learning performance. Similarly, Hwang and Hu [6] found that collaborative learn-

ing in VR improved the learning of geometric concepts compared to traditional learning.

In the field of medical education, XR allows students “to do” activities rather than “to

observe” activities [11]. For example, Schwaab et al. [10] used VR to study emergency

medicine; the authors designed a virtual examination room in which students could treat

virtual patients (avatars) while being monitored by teachers remotely in real time: The re-

sults showed that students defined the VR system as easy to use, pleasant, realistic, and

efficient. In the field of industrial education, XR enhance learning by enabling experiences

that are not feasible in the real world [11]. As an example, Abichandani et al. [2] designed

a virtual wind farm to facilitate education on wind energy where students can modify the

parameters of the wind turbines to study the corresponding effect on the environment.

Today, numerous AR/VR commercial applications are available to support students

in the learning process [12]: ClassVR and GeoGebra mixed reality are some example, to

cite a few. In this context, the VERSE project [4] stands out as an innovative educational

software platform, designed for on-life teaching using XR technologies. Using a multi-

platform system, VERSE promotes collaborative learning creating joint environments that

support students and teachers in their educational process. Leveraging on cutting-edge

technologies and gamification strategies, VERSE aims to revolutionise the educational ex-

perience by providing an engaging, immersive, and personalised learning environment.
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The Verse Platform
VERSE is at the forefront of educational innovation, being the first software to seamlessly

integrate 2D mathematics labs that use gaming mechanics to present students with en-

gaging, game-like challenges. These labs are designed to make mathematical problem-

solving not only more accessible but also enjoyable, transforming traditional exercises

into dynamic experiences that captivate students’ attention. In addition to the 2D labs,

VERSE offers a 3D ARENA mode, which elevates the learning experience by creating im-

mersive mathematics activities. These activities are enhanced by conversational avatars,

powered by advanced CONVAI technology, which interact with students in real-time, pro-

viding personalised guidance and feedback. VERSE encourages active learning by placing

students in the centre of the educational process. Through the use of interactive avatars

and immersive environments, students are not merely recipients of information but ac-

tive participants in their learning journey. Moreover, the collaboration with LABSTER,

a leader in STEM education, brings a wealth of expertise in creating virtual laboratories

that bridge the gap between theory and practice. The activities offered in VERSE, partic-

ularly in the fields of mathematics and physics, are designed to be highly interactive and

relevant to real-world applications, making complex scientific concepts more tangible

and easier to grasp. One of the most compelling advantages of a software platform like

VERSE is its ability to transform the learning of abstract disciplines, such as mathematics

and physics, into an interactive and accessible experience. Traditionally, students often

struggle with the abstract nature of mathematical formulas, which can be challenging to

visualise and comprehend when taught in isolation. However, VERSE addresses this chal-

lenge by embedding these concepts within gamified, immersive experiences that make

learning both engaging and intuitive.

An example of VERSE gamification Let us consider the study of vectors and scalars,

a fundamental concept in physics that is often difficult for students to fully grasp. In a

traditional classroom, students would be introduced to the subject through a series of

well-known formulas:

‖~v‖ =
√
v2x + v2y + v2z (11.1)

~a ·~b = axbx + ayby + azbz (11.2)

~a×~b = (aybz − azby, azbx − axbz, axbz − aybx) (11.3)

While understanding this abstract formula is crucial, the concept can be far more eas-

ily figured out when applied in a practical, gamified context. As an example, consider

a simulation within VERSE where students are tasked with a space mission to Mars: as

part of the mission, they need to navigate the spacecraft by applying their knowledge of

vectors. Through this interactive experience, students can directly engage with (11.1) by

calculating the magnitude and direction of vectors to determine the correct trajectory

for the spacecraft, or they can revise (11.2) and (11.3) to solve a problem related to the

spacecraft’s rotation.
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Conclusion XR technologies promise significant changes in the educational field, allow-

ing students to learn in a more engaging and enjoyable way [12]. As we highlight in this

presentation, there are several advantages to using XR technologies in the educational

field, including: (i) enhance the transition from knowledge to competence [1], (ii) access

unlimited resources (e.g. scientific equipment) that could not be available in the real-

world [11], (iii) recreate environments that do not exist or are too dangerous in the real

world [1], and (iv) promote high emotional involvement in online learning [9]. Based on

these advantages, XR technology can be considered a valid support for education. Im-

mersivity and presence seem to positively influence human emotions [7] which could also

improve students’ self-esteem, self-efficacy, awareness, and resilience.
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Our work aims at simulating and predicting the temperature conditions inside a power

transformer using Physics-Informed Neural Networks (PINNs). The predictions obtained

are then used to determine the optimal placement for temperature sensors inside the

transformer, under the constraint of a limited number of sensors, enabling efficient per-

formance monitoring. The method consists of combining PINNs with Mixed Integer Opti-

mization Programming to obtain the optimal temperature reconstruction inside the trans-

former. First, we introduce a novel approach for the regularization of the PINN model

through physical unit scaling. Then, we extend our PINN model for thermal modelling of

power transformers to solve the heat diffusion equation from 1D to 2D space. Finally, we

construct an optimal sensor placement model inside the transformer that can be applied

to problems in 1D and 2D.

According to the working principle of the transformer, its change in temperature can be

described as the heat equation of an object with an internal heat source x, t 7→ P0 +
Pk(x, t) where x ∈ Ω is the spatial position and t ≥ 0 is the time, that is,

1

α

∂T

∂t
= ∆T +

1

k
[P0 + PK(x, t)− h(T (x, t)− Ta)],

where α = k
cpρ

, T is the temperature of the power transformer, ∆ is the Laplacian, P0 is

the load loss. In this work, we assume variable separation for the source term, that is

PK(x, t) = P t
K(t)P x

K(x), for x ∈ Ω, t ≥ 0

In the monitoring and maintenance of power transformer performance, temperature

is a key factor. The common method is to use a general model, such as the mineral-oil-

immersed transformer model [2, 3] and the thermal circuit model [5, 6, 7], to measure the

critical temperature and then to use numerical methods to simulate and analyze the inter-

nal temperature of the transformer. However, the computational complexity of numer-

ical methods increases exponentially with the complexity of the model and its accuracy

depends on the suitability of the model grid discretization. To reduce such limitations au-

thors in [1] and [4] propose Physics-Informed Neural Networks (PINNs) to simulate and

predict the internal temperature of the transformer. On this basis, we extended and ap-

plied this method to find the most suitable internal temperature monitoring positions in-

side of the transformer under the restriction of a limited number of temperature sensors

to achieve efficient performance monitoring.
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Assuming nmax is the maximum number of temperature sensors that can be placed

inside the transformer, and nmin is a minimum required number of sensors, we use a

mixed-integer optimization model to find the temperature-stable points inside the trans-

former. These points would result in the optimal placement of sensors that can effectively

reconstruct the temperature under given limitations. A stable temperature point refers

to the point where the absolute value of the time-averaged temperature change ∂T
∂x is

minimum. The basic optimization model for this case follows.

min
s

1

Nt

Nt∑
i=1

|∇x · T (x, ti)|x=x̄| · s

s.t. s = [s1, s2, . . . , sNx ]
si ∈ {0, 1}
nmin ≤

∑
i

si ≤ nmax,

where Nt is the number of training points, T is the temperature, ∇· is the divergence

operator, x̄ is a grid ofNx points overΩ, t ≥ 0 is the time, si is a binary directional variable,

indicating whether there is a sensor at the corresponding position xi.

Results
Figure 12.1 shows a snapshot of the 2D solution with the results for sensor placement.

The plot on the left shows the time-averaged temperature results, while the plot on the

right displays the time-averaged first-order spatial derivatives of the temperature (∂T∂x +
∂T
∂y )mean with nmin = 5, nmax = 10, d = 0.05 and d1 = 0.1.
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Figure 12.1: The optimal placement of sensors for 2D spacial problem, with nmin = 5,

nmax = 10, d = 0.05 and d1 = 0.1 .
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In many numerical applications, we often encounter phenomena for which we only

have measurements at a set of equally spaced points. When using standard polynomial

interpolation to approximate such phenomena, the results can be highly inaccurate due

to the Runge phenomenon. Several techniques have been introduced to mitigate this

issue, for example, the mock-Chebyshev subset interpolation and the constrained mock-

Chebyshev least squares approximation [1, 5, 6, 7]. The excellent accuracy achieved by

these approximations has led to their widespread use in various applications. Motivated

by the success of these techniques in the classical polynomial interpolation, we aim to

extend the mock-Chebyshev subset interpolation and the constrained mock-Chebyshev

least squares approximation to the case of interpolation on segments. Specifically, we

present three detailed generalizations of these methods in this context:

• Concatenated segmental mock-Chebyshev method;

• Quasi-nodal mock-Chebyshev method;

• Constrained segmental mock-Chebyshev method.

The interpolation on segments is a mathematical technique used to approximate a

function f over a specific interval I = [a, b]. It offers a distinct approach compared

to classical polynomial interpolation. While the classical polynomial interpolation relies

solely on function evaluations at specific points, the interpolation on segments leverages

information about the integral of the function f over a set of subintervals of the interval

I . This difference is crucial because the interpolation on segments only requires the func-

tion to be essentially bounded, a less restrictive condition than the continuity required for

classical polynomial interpolation. We demonstrate that two of these three new meth-

ods achieve optimal growth rates for the Lebesgue constant of the corresponding Van-

dermonde matrix. Specifically, one method boasts logarithmic growth, while another

exhibits growth between logarithmic and square-root. Finally, we compare the perfor-

mance of these new approximation techniques through various numerical experiments.

Other informations can be find in [3].
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Introduction
The solution of parametrized partial differential equations (PDEs) using high-fidelity tech-

niques is computationally expensive, especially in real-time simulations and many-query

context. Reduced Order Methods (ROMs) aim to build surrogate models to simplify com-

plex parametric systems, generating efficient and reliable approximations [3, 8].

Non-intrusive and data-driven approaches based on Deep Learning recently gained a

lot of interests in the development of efficient models overcoming some of the limitations

of traditional approaches via linear and non-linear strategies [1, 2, 4, 6].

Autoencoder architectures can be considered as the non-linear generalization of the

Proper Orthogonal Decomposition (POD), and are usually exploited for unsupervised learn-

ing tasks in combination with Convolutional Neural Networks. When dealing with com-

plex domains defined on unstructured meshes, such approaches lack of geometrical con-

sistency, decoupling the geometric bias from the learning procedure.

Here, we presents two frameworks for nonlinear model order reduction based on

Graph Convolutional Autoencoders (GCA) [7] and Graph Feedforward Network (GFN) [5]

to discover unseen patterns and perform efficient approximations in different physical

contexts, including bifurcating behavior, high-dimensional parameter space, multifidelity

applications, slow Kolmogorov-decay, and varying domains.

Graph convolutional autoencoder architecture (GCA-ROM) [7]
With GCA-ROM1, we introduce a data-driven nonlinear surrogate ROM for PDEs defined

on complex unstructured grids, capturing their physical and geometric features through

a combination of Graph Neural Networks (GNNs) and Convolutional Autoencoders.

The architecture (see Figure 14.1) is designed to cope with parametrized scalar/vector

and linear/nonlinear PDEs, possibly exploiting pooling/unpooling operations to up/down-

sample large meshes. Our approach is characterized by spatial convolutions, defined on

neighbourhoods of nodes through message passing and aggregation procedures.

By exploiting geometric priors in the learning phase, our methodology learns the la-

tent space’s evolution for an efficient reconstruction with consistent speedup, and shows

great performance in generalizing to new configurations, especially in the low-data regime.

1www.github.com/https://github.com/fpichi/gca-rom
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Figure 14.1: GCA-ROM architecture for the learning phase.

Figure 14.2: GFN-ROM is a nonlinear non-intrusive multifidelity surrogate model.

Graph Feedforward Network architecture (GFN) [5]
To overcome the limitations of the up/down-sampling procedures, we introduce GFN2,

a novel neural network layer extending the concept of feedforward networks to graph-

structured data. By exploiting the connection between the weights of a neural network

and the nodes of a mesh, we build a resolution-invariant GFN-ROM strategy (see Figure

14.2) for multifidelity applications, capable of training and testing on different mesh sizes.

The approach results in a more lightweight and flexible strategy when compared to

state-of-the-art models, showing impressive generalisation performance in both single

fidelity and multifidelity scenarios. Moreover, we provide provable guarantees on the

performance under suitable assumptions, identifying the different sources for the error.

2www.github.com/https://github.com/Oisin-M/GFN
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Conclusions
We developed two novel non-intrusive reduced-order architecture based on GNNs and

GFN. Both strategies are interpretable and efficient, taking advantage of the geometrical

information and extracting a compressed representation of the dynamics into the latent

variables. We tested our methodologies on several challenging physical and geometrical

multi-parametrized models, such as Poisson, Graetz, Stokes and Navier-Stokes, compar-

ing their performance for bifurcating and advection-dominated phenomena, for which

classical ROMs are not suited. The main advantage of both architectures is their remark-

able accuracy and high speedup while working with small training set even for complex

problems defined on varying geometries.
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We examine a high-order numerical scheme for time-dependent first-order Hamilton–

Jacobi–Bellman equations. In particular, we propose to couple a semi-Lagrangian scheme

with a Central Weighted Non-Oscillatory (CWENO) reconstruction. Convergency is stud-

ied in the case of state- and time-independent Hamiltonians and numerical simulations are

presented in one and two space dimensions. Our experiments show the superior perfor-

mance in terms of CPU time gain by the Central version of the scheme with respect to the

one combined with traditional WENO reconstructions. This type of numerical scheme is

then generalized to the case of second-order evolutive Hamilton–Jacobi equation which

arises in the level set formulation of mean curvature motion [3, 4] and, in particular, in the

case of a curvature-related level set model first proposed by Zhao et al. [5], to reconstruct

unknown surfaces from an unorganized set of points [2]. The variational problem it is as-

sociated with a partial differential equation (PDE) formulation with a curvature constraint

that minimizes the surface area weighted by its distance from the point cloud. Level-set

methods are used in this framework to track the evolution of an initial surface and to find

an implicit representation of the final shape. Among all the possible representations, we

compute the signed distance function at least in proximity to the reconstructed surface.

Regarding the numerical approximation of the solution, the use of the semi-Lagrangian

scheme coupled with a local interpolator allows us to save computational costs, com-

pared to global ones [1], while also enhancing the parallel implementation of the algo-

rithm. Numerical tests in two and three dimensions are presented to evaluate the ac-

curacy of the approximated solution and the efficiency of the algorithm in terms of CPU

times.
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General setting
In this presentation, we consider an ensemble of affine-control systems inRn of the form

ẋ = Aθ(x)u+ bθ(x), x(0) = xθ0,

parametrised by θ ∈ Θ (a compact subset of an Euclidean space). We insist on the fact

that all the ODEs of the ensemble are simultaneously driven on the time horizon [0, T ]
by the same control u ∈ U := L2([0, T ],Rm). If we understand θ as a random vector,

we can consider its law, associated with the probability measure µ ∈ P(Θ). Hence, we

consider the weighted functional Jµ : U → R defined as

Jµ(u) :=

∫
Θ

a
(
xθu(T ), θ

)
dµ(θ) + λ‖u‖2L2 , (16.1)

where λ > 0 tunes the regularisation, and a : Rn ×Θ→ R is a C1-regular function that

designs the end-point cost for the elements of the ensemble. We observe that in (16.1)

the dependence on the uncertain parameter is saturated by considering the expected

end-point cost, that we are interested in minimizing. Another important approach for

eliminating the dependence on θ involves considering the least favorable conjuncture and

minimizing the worst-case cost. More precisely, this traduces into defining the following

functional:

G(u) := sup
θ∈Θ

a
(
xθu(T ), θ

)
+ λ‖u‖2L2 . (16.2)

We report that the main difference between (16.1) and (16.2) is that the first functional

depends smoothly on the control u, while the second is in general non-differentiable. We

also mention that our analysis embraces also more general running costs than the L2-

norm squared on the control, e.g. we can consider an integral term u 7→
∫ T

0
f(u(t)) dt

that makes the functionals (16.1) and (16.2) coercive and lower semi-continuous in the

Lp-weak topology (for 1 < p <∞).

From infinite to finite ensembles
If Θ or the support of µ consist of infinitely many points, dealing with the functionals Jµ
(16.1) orG (16.2) requires (just for a single evaluation) to handle simultaneously infinitely

many ODEs. To overcome this issue, we establish a Γ-convergence result. Namely, let us
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consider a sequence of probability measures (µn)n ⊂ P(Θ) such that µn ⇀ µ as n→∞
and such that # supp(µn) < ∞ for every n ≥ 1. Then, for every n ≥ 1, we define the

functional Jµn
as in (16.1), with the measure µn in place of µ in the first integral. Similarly,

given a sequence of subsets (Θn)n with Θn ⊂ Θ, #Θn < ∞ such that dH(Θn,Θ) → 0
(Hausdorff distance) as n→∞, we defineGn as in (16.2), but taking the sup on the finite

subset Θn instead of Θ. In this framework, it is possible to prove that Jµn
→Γ Jµ and

Gn →Γ G as n→∞ (Γ-convergence of the functionals). This implies the strong conver-

gence of the minimisers ûn of Jµn
and ūn ofGn to the minimisers of Jµ and ofG, respec-

tively. From a numerical perspective, such a result allows us to address the minimization

of Jµn and Gn (which involve enembles with a finite number of elements) in place of Jµ
and G, respectively. It is worth mentioning that our Γ-convergence result is useful also

for theoretical purposes, since we have been able to use the convergence of the minimis-

ers to establish necessary optimality conditions for Jµ andG by passing to the limit in the

Pontryagin Maximum Principle. In this way, we extended to affine-control systems the

necessary conditions previously obtained [1, 6]. We studied the averaged problem (16.1)

in [2], and in [4] we applied those techniques to a setting concerning Normalizing Flows

and the approximation of optimal trnasport maps. Moreover, the minimax problem (16.2)

has been recently addressed in [3].

Applications: models for chemotherapy
Let us consider the following model for chemotherapy in metastatic cancer with innate

(primary) resistance to a drug:{
ẋ1 = ξ1x1

(
1− x1+x2

M

)
− µx1u, (sensitive population)

ẋ2 = ξ2x2
(
1− x1+x2

M

)
. (resistant population)

(16.3)

The first row of the system represents the evolution of the sensitive population, i.e., the

cells of cancer that the drug can kill. In contrast, the second row describes the evolution

of the population with primary resistance to the medicament. We observe that the two

populations interact since they compete for the same (limited) resources. In (16.3), we

have that u = u(t) ∈ [0, umax] is the control, which is related to the dosage of medica-

ment prescribed to the patient, while ξ1, ξ2,M, µ are the (patient-specific) parameters of

the system. For further details and more sophisticated models, we refer to [5]. The base-

line therapy consists of giving the patient the maximal dose of the drug, corresponding

to the strategy ū ≡ umax, and changing medicament when a progression of the disease

is observed. This approach has the advantage of being parameter-independent, i.e., it

can be applied to every patient without the need for a precise estimate of the values of

the model’s parameters. On the one hand, as we can see in Figure 16.1, it is possible to

develop strategies that achieve improved behavior in the long-term treatment. On the

other hand, such dosage policies may need to be carefully calibrated according to the

patient-specific parameters in order to be effective. In this scenario, it seems natural to

design and analyze pharmacological treatments with an ensemble optimal control stand-

point.
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Figure 16.1: In the graphs, we simulated the evolution of the sensitive population (blue),

the resistant (red), and the cancer’s total population (yellow dashed). The pharmacologi-

cal treatment starts at the instant t = 5 in both the simulations, with the same conditions

in terms of population size and patient-specific parameters. On the left, we reported the

typical evolution related to the baseline strategy ū ≡ umax. The sensitive population is

rapidly extincted, and –after a quiescence period– we observe that the resistant popu-

lation takes over, so that at the final evolution time we have a large cancer population

made of resistant cells. On the right, we performed the same long-term simulation using

the following dosage policy: ū ≡ 60%umax. In this way, we avoid killing completely the

sensitive population at the beginning of the therapy, and the total cancer’s population is

kept under control for a longer time. This is due to the fact that the two populations com-

pete for the available resources, and the presence of a stable sensitive population delays

the progress of the resistant one. We stress that the strategy related to the picture on

the right depends on the patient-specific model’s parameters.
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The explicit stabilized Runge-Kutta-Chebyshev (RKC) methods offer a valuable middle

ground between standard explicit and implicit Runge-Kutta methods for handling stiff,

high-dimensional, diffusion-dominated equations. Their extended stability region, which

increases quadratically with the number of internal stages, allows for larger time steps

without needing to solve complex systems. Due to their two-term recurrence relations,

these methods are also memory-efficient and simple to implement [1].

Consider the ordinary differential equation (ODE)

ẏ = g(y), y(0) = y0, (17.1)

where y(t) ∈ Rd and the vector field g : Rd 7→ Rd is assumed smooth. The first-order

s-stage RKC method with step size ∆t to integrate (17.1) reads for all n ≥ 0,

y0n = yn, y1n = y0n + µ1∆tg(y
0
n),

yjn = µj∆tg(y
j−1
n ) + νjy

j−1
n + (1− νj)yj−2

n , j = 2, . . . , s,

yn+1 = ysn,

(17.2)

To keep the discussion on track, we refer the reader to [1] for the definition of the equa-

tion coefficients. The stability function of the RKC method oscillates between−αs(η) and

αs(η) where 0 < αs(η) < 1 and η > 0 are the damping parameters (see [3] for details).

Application to optimization
In [3], and based on RKC, a new algorithm called RKCD, is introduced to solve stiff opti-

mization problems efficiently. Stiff optimization problems, in this context, refer to cases

where the second derivative of the objective function has large eigenvalues concentrated

near the positive real axis. Let d ∈ N\{0} and a `-strongly convex differentiable function

f : Rd → R, with L-Lipschitz derivative. We then consider the following optimization

problem

min
x∈ Rd

f(x). (17.3)

To solve (17.3), the authors of [3] consider the gradient flow

ẋ = −∇f(x), x(0) = x0 ∈ Rd, (17.4)
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where x0 is an initialization value. For stiff gradients (L � l), an explicit Euler method

needs to severely restrict the step size to ensure stability. The RKCD method uses instead

the first order RKC (17.2) to iterate on (17.4) (see [3, Algorithm 1]). In particular, if the

function f is quadratic, i.e.

f(x) =
1

2
xTAx+ bTx,

where A ∈ Rd×d is a positive definite and symmetric matrix with condition number κ =
L/`, and b ∈ Rd, we have the following.

Proposition 1 (Proposition [3]). Consider the minimization problem (17.3) where f is qua-

dratic. Now let xk be the iterate of the RKC method (17.2) applied to (17.4), i.e, g = −∇f .

If the number of stages s and the time-step h are chosen according to [3, Condition (3.6)],

then we have

‖xk − x?‖ ≤ αs(η)
k‖x0 − x?‖,

where x? is the unique minimizer of f .

New explicit implementation of implicit methods
We now revisit equation (17.1) under the additional assumption that the eigenvalues of

the Jacobian matrix of g have strictly negative real parts. The internal stages of an implicit

Runge-Kutta method of coefficient matrix A applied to (17.1) with step size ∆t are the

steady state solution of

Ẏ = ∆tA⊗ Idg[Y]− Y + Y0, Y(0) = Y0, (17.5)

where Y =


Y1
Y2
...

Ym

, Y0 =


y0
y0
...

y0

, g[Y] =


g(Y1)
g(Y2)

...

g(Ym)

, m is the number of stages of the

implicit method,⊗ is for the Kronecker product, and Y0 is an initialization that needs not

to be equal to Y0. Notice that, if the vector fieldA⊗ Idg[Y] can be written as−∇F (Y),
then (17.5) corresponds to the gradient flow (17.4) for f(Y) = ∆tF (Y) + 1

2‖Y − Y
0‖22.

The idea is now to apply RKC method (17.2) to (17.5) until the solution of the implicit

Runge-Kutta method is found.

The problem of non-symmetric coefficients matrix. When the matrix A is not sym-

metric, Proposition 1 does not hold. To illustrate this, we apply our approach to a one-

dimensional linear diffusion partial differential equation (PDE) using the backward Euler

method with AE = 1 and a five-stage, fourth-order, singly diagonally implicit Runge-

Kutta method (SDIRK4) [4, Chap. IV.6]. In the SDIRK4 method, the lower triangular ma-

trixAS ∈ R5×5 has all diagonal entries equal to 1/4. We conduct a single time step and

examine the increments produced by each method. The results indicate that the incre-

ments converge to machine precision when using the backward Euler method, whereas
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Method tol Diffusion evals Reaction evals Steps acc(rej) error in v
expSDIRK4 10−3 1509 118 7(0) 8.2× 10−5

PIROCK 10−3 292 67 13(0) 1.2× 10−2

expSDIRK4 10−5 3072 842 54(8) 8.7× 10−7

PIROCK 10−5 1594 1384 267(7) 2.1× 10−4

expSDIRK4 10−6 4659 1630 105(7) 6.5× 10−8

PIROCK 10−6 6383 7391 1470(7) 2.1× 10−5

expSDIRK4 10−7 7233 3267 216(7) 3.6× 10−9

PIROCK 10−7 16362 22515 4495(185) 3× 10−7

Table 17.1: comparison between expSDIRK4 and PIROCK.

the same level of convergence is not observed with SDIRK4. Indeed, a Jordan decom-

position of AS in this case shows that, when the stability function of RKC is applied to

AS ⊗ Idg[Y], unbounded terms appear. To deal with this issue, we consider the follow-

ing modification of the equation

Ẏ = ∆tγIm ⊗ Idg[Y] + Y0 − Y +∆t(A− γIm)⊗ Idg[Y],

where in the case of SDIRK4 γ = 1/4 andm = 5we apply a modified RKC in a partitioning

framework. This allows the stability function to act on the diagonal part∆tγIm⊗Idg[Y]+
Y0 − Y as its argument, while only multiplying the other (nilpotent) term.

Advection-diffusion-reaction equations. For problems with stiff diffusion, advection,

and highly stiff reaction terms, we propose a more elaborated partitioning that treats the

reaction terms implicitly using a backward Euler scheme to iterate in the gradient flow.

This idea is similar to the one used in the PIROCK integrator [2]. In Table 17.1, we compare

the solution obtained by SDIRK4 implemented using our approach with the PIROCK sta-

bilized integrator from [2], both applied to a stiff diffusion-reaction Brusselator problem.

We use the error estimator described in [4] for SDIRK4. We can clearly see, especially for

higher accuracy, that our method is much less costly in terms of vector fields evaluation.

References
[1] A. Abdulle. “Explicit Stabilized Runge–Kutta Methods”. In: EACM. Springer, 2015,

pp. 460–468. DOI: 10.1007/978-3-540-70529-1_100.

[2] A. Abdulle and G. Vilmart. “PIROCK: a swiss-knife partitioned implicit-explicit or-

thogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction

problems with or without noise”. In: J. Comput. Phys. 242 (2013), pp. 869–888. ISSN:

0021-9991. DOI: 10.1016/j.jcp.2013.02.009.

[3] A. Eftekhari, B. Vandereycken, G. Vilmart, and K. C. Zygalakis. “Explicit stabilised

gradient descent for faster strongly convex optimisation”. In: BIT Numerical Math-

ematics, 61(1):119–139. 2021.

[4] E. Hairer and G. Wanner. Solving ordinary differential equations II. Stiff and differential-

algebraic problems. Berlin and Heidelberg: Springer-Verlag, 1996.

70

https://doi.org/10.1007/978-3-540-70529-1_100
https://doi.org/10.1016/j.jcp.2013.02.009


Numerical study on parameter effects of a new model for water penetration in porous

media

Elishan C. Braun∗, Gabriella Bretti

Istituto per la Applicazioni del Calcolo “M. Picone” (IAC), CNR, Rome, Italy

KEYWORDS: mathematical modelling · porous media · water flow · numerical simulations

MSC2020: 65M06 · 76S05 · 35Q35

Natural stones used in historical buildings are open porous systems that are subject

to different damaging processes because of their exposure to the environment. Most

weathering processes affecting porous materials, such as salt-crystallization, freezing-

thawing cycles, dissolution of soluble fractions, etc., are associated to liquid water pene-

tration, either in the form of meteoric precipitation or groundwater moisture infiltration.

In addition, the microstructural modifications induced by the above-mentioned processes

may lead to an increase in water penetration, thus contributing to an ongoing decay pro-

cess. Hence capillary absorption measurements may provide fundamental indications for

monitoring the progress of materials degradation. In this framework, the present work

describes a mathematical model using Darcy’s law (see later (18.1)) to simulate the water

uptake into a porous medium, where the physical properties of the material are described

by some crucial parameters representing the diffusion rate of water in the medium, the

residual value of saturation that ensures the hydraulic continuity, and the absorption

properties of the material. We start from the mathematical model describing capillary

rise and water flow in porous media introduced in [4] and applied with promising results

to different materials, also in presence of protective treatments, see [3].

The mass balance equation for the liquid (water) having density ρl is ∂tθ = ∂zq, where

q is the volumetric flux given by the well known Darcy’s law [1]:

q = −
k
(

θl
n0

)
µl

(
∂zPc

(
θl
n0

)
− ρlg

)
. (18.1)

Note that Pc is the capillary pressure, i.e. the pressure drop on the interface between liq-

uid and gas, k is the (intrinsic) permeability of the porous matrix to vapour density, µl the

viscosity of the fluid, with g the acceleration due to gravity, n0 is the open porosity of the

material, i.e. the fraction of volume occupied by voids, while θl is the fraction of volume

occupied by the fluid. As usual in the literature [1], we assume the capillary pressure as a

function of the fluid saturation s = θl/n0 only. Note that the term ρlg in (18.1) takes into

account the effect of the gravity in the vertical flow and it can be disregarded for small

specimens of a given material. Formula (18.1) can thus be written as q = ∂zB(s)+ k(s)
µl
ρlg,

withB a function such that:

∂zB(s) = −k(s)
µl

∂zPc(s). (18.2)
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In [4],B(s) andB′(s) have a mathematical formulation of a polynomial of third and sec-

ond degree, respectively, see the dotted line curves in the right panel of Figure 18.2, and

they depend on three crucial parameters: the residual saturation sR that ensures the hy-

draulic continuity, and the maximum value of saturation sS , the diffusion rate of water

in the mediumB′
max. Following the idea in [4], a new formulation of functionB and the

related mathematical model based on Darcy’s law is introduced [2] in order to express

separately the permeability function k(s) and the capillary pressure Pc(s), see the solid

line curves depicted in the right panel of Figure 18.2.

Here we deal with five model parameters to be calibrated against data: the two sat-

uration parameters defined above (sR, sS), two characteristic coefficients for the given

material for the capillary rise in the material (α, c), and a parameter related to perme-

ability properties (γ). The one-dimensional mathematical model for the experiment of

imbibition, withB the function satisfying relation (18.2), is given by the equation:

∂tθl = ∂z

(
∂zB(s) +

gρl
µl
k(s)

)
. (18.3)

It is coupled with suitable initial and boundary conditions in order to have that the bottom

side of the sample is always saturated, while at the top side an exchange of the specimen

with the humidity within the bucket occurs, thus it is assumed as the value of humidity

on the facelet on the top.

We solve the problem (18.3) numerically by computing θ(z, tk) in skj = θkj /n0 with the

forward-central approximation scheme including gravity effect:

θk+1
j = θkj +

∆t

∆z2
(B(skj+1)− 2B(skj ) +B(skj−1)) + g

∆t

2∆xµ
(k(skj+1)− k(skj−1),

and suitable discretized boundary conditions. We assume the CFL condition

∆t

∆z2
≤ n0

2max[sR,sS ]B′(s)
,

with θkj = θ(zj , tk), zj = j∆z, j = 0, ..., N =
[
h1

∆z

]
, {tk}k=1,...,Nmeas

. With numerical

integration we compute the quantity of water within the specimen obtained by the model

at time tk and we then solve nonlinear minimization problem by computing the forward

problem for each step in a suitable optimization method to calibrate parameters forB(s)
against experimental data. The calibrated model is then used for predicting the chemical

damage on building heritage due to the interplay with damaging substances penetrating

in the material, such as CO2 pollutant in the environment.
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Figure 18.1: Effect on gravity on water flow through porous media.

Figure 18.2: Left Panel: Effect of parameters sR, sR, c, α, γ onBkP (s), changes the imbi-

bition curve, shown in the red marked area. Right Panel: Plots of symmetricalB(s), dB(s)
ds

and asymmetricalBkP (s),
dBkP

ds .
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Several physical and engineering problems involve fluids in transitional regimes, in

which the fluid description breaks down due to the presence of boundary layers or shocks.

In this context, the use of a kinetic model is necessary to describe the system. Unfor-

tunately, kinetic models are computationally more expensive than the fluid description

itself, making it preferable to use it only locally in space.

In this work, we present a hierarchy of hybrid numerical methods for the multi-scale

Boltzmann equation. We use a criterion to split the two-dimensional spatial integration

domain into three regimes each one governed by a different equation: Euler equations,

BGK equation, and full Boltzmann equation. The main advantage of this approach is us-

ing Euler equations in spatial regions in which the fluid is in the hydrodynamic regime, and

the Boltzmann or BGK equation elsewhere. This ensures high precision in regions where

the hydrodynamic description breaks down, and an overall faster computation of the so-

lution thanks to the low numerical cost of the approximation of the Euler equations.

The novelty of this work is the spatial 2D - velocity 3D hybrid kinetic/fluid numerical

method implementing the three regimes. To speed up the code execution, we take ad-

vantage of the CPU multi-thread capability and we use the fast spectral method for the

computation of the Boltzmann operator.

It is important to identify a good regime indicator to automatically switch between

the three different regimes. In literature, most of the works concerning hybrid methods

rely on the domain technique introduced by Boyd, Chan and Chandler in [1]. It consists

of a macroscopic criterion to pass from the hydrodynamic description (fast to compute

numerically, but not accurate near boundary layers or shocks) to the kinetic one (compu-

tationally expansive, but accurate in most cases). To decide which equation to use, they

evaluate the local Knudsen number, and if this quantity is below a certain threshold, the

kinetic description is used.

Other criteria used in literature are based on the macroscopic description of the model,
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which are inaccurate when the fluid is far from the thermal equilibrium [2].

In our work, we introduce a criterion to switch from the hydrodynamic regime to the

kinetic regimes (BGK equation or full Boltzmann equation) based on the works of Lever-

more, Morokoff and Nadiga in [4], Filbet and Rey in [2], and Filbet and Xiong in [3]. All

these works leverage the Chapman-Enskog expansion of the distribution, they only de-

pend on macroscopic quantities given by a closure of the kinetic model and do not require

the evaluation of the distribution function. The criterion we use to pass from the kinetic

descriptions to the corresponding hydrodynamical limit is based on comparing the trun-

cation of the Chapman-Enskog expansion with its hydrodynamical equilibrium.

To validate the algorithm, we carry out several simulations to test its accuracy in the

transitional regimes. In particular, we simulate the movement of an object inside a fluid

at rest; a 2D Riemann problem with initial datum in four quadrants (similar to the one re-

ported in [3]), and a fluid moving around a fixed obstacle. From our results, we observe a

great improvement in the execution speed with respect to algorithms that only perform

numerical integration using kinetic models.
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Traffic flow is a complex phenomenon that deeply impacts our daily lives, the economy

and the environment. Studying and understanding traffic behaviour is crucial to develop

solutions that can alleviate congestion and improve road safety.

We aim to investigate heterogeneity in traffic by introducing a mathematical model

which is able to study the interactions between human drivers and autonomous vehicles

(AVs). One of the potential benefits of an intelligent transportation system (ITS) regards

safety: AVs can dramatically reduce accidents caused by human error, with an estimated

fatal crash-rate reduction of at least 40% [6]. In addition, AV technology has the potential

to improve traffic flow and reduce congestion and fuel consumption. This is due to the

fact that AVs could enable quicker reaction times and closer spacing between vehicles to

counteract increasing demand, thus leading to smoother traffic patterns [9].

We propose a scalar macroscopic model which can capture some specific features

of human behaviour on the road, including nonzero reaction time and short/long-range

interactions among vehicles [4]. The model considers a constant reaction time τ > 0 and

is formulated as:

∂tρ(t, x) + ∂x
(
ρ(t, x)f(ρ(t, x))v((ρ ∗ ω)(t− τ, x))

)
= 0, (20.1)

where ρ : R+ × R → [0, R] is the vehicle density, v : [0, R] → [0, V ] is the mean traffic

speed, and ω : [0, L] → R+ is a convolution kernel. The positive constants R, V and

L are respectively the maximal traffic density, the maximal speed, and the look-ahead

distance of drivers. The model is a non-local extension of the Lighthill-Whitham [12] and

Richards [13] (LWR) model. Such non-local extensions have been recently introduced in

the literature [2, 7] to overcome some drawbacks of local dynamic descriptions and they

are based on the assumption that drivers adapt their speed to a weighted mean of the

downstream traffic density or velocity. The model also incorporates a delay, thus taking

into account humans’ reaction time. The function f : [0, R] → [0, 1] is chosen to play

the role of a saturation function and it represents the main difference with the delayed

non-local model introduced in [11]. Such a function guarantees that the density does not

exceed R, modelling that the density can never exceed the maximum capacity of the

road. This is an improvement with respect to both the local [8] and the non-local [11] ex-

isting models with time delay, as they fail to ensure such a bound also for small times.
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We provide well-posedness of entropy weak solutions. To prove existence, we construct

finite-volume approximate solutions using a Hilliges-Weidlich (HW) scheme [10] and we

provide uniform L∞ and BV estimates, thus ensuring convergence. Then, we prove that

the limit function is an entropy weak solution of the model. We also achieve anL1 stability

result by adapting Kružkov’s doubling of variables technique, from which both unique-

ness and convergence to the associated non-delayed model follow. This is also an im-

provement of the result obtained in [11] as in the current scenario we prove the conver-

gence for any chosen time horizon. We propose some numerical tests, with a particular

focus on the capability of the saturation function f in guaranteeing the maximum princi-

ple, and on the influence of the delay on the increase of the total variation of the solution.

Equation (20.1) constitutes a good basis for building a multi-class model. Through this

extension, we intend to further investigate the interactions among several classes of vehi-

cles with different behaviours in terms of look-ahead distance and reaction time. Indeed,

we can assume that smart cars can collect information on the surrounding traffic within a

large perimeter and are able to instantaneously respond to external events, whereas hu-

man drivers react to downstream traffic in a shorter range and with a non-zero time delay.

In line with this idea, we propose the following system of non-local delayed conservation

laws [5]:

∂tρi(t, x) + ∂x(ρi(t, x)fi(ρi(t, x))vi((r ∗ ωi)(t− τi, x))) = 0, ∀i = 1, . . . ,M,

where ρi : R+ × R → [0, Ri] is the vehicle density, vi : [0,+∞) → [0, Vi] is the mean

traffic speed, ωi : [0, Li] → R+ a convolution kernel, fi : [0, Ri] → [0, 1] the satura-

tion function, and τi ≥ 0 is the reaction time associated to the i-th class. The positive

constants Ri, Vi, Li are respectively the maximal density, the maximal speed, and the

look-ahead distance of drivers and they can be different among the classes. Multi-class

traffic models were first proposed in [1, 14] to account for the diversity in vehicle types,

characteristics, and behaviours, also in non-local patterns [3].

We extend to the multi-class scenario the theoretical analysis conducted for the scalar

model, thus obtaining well-posedness and L1 stability estimates, improving also the re-

sults in [3] where the absence of saturation functions did not allow to obtain global L∞

estimates. Finally, we conduct a numerical investigation analyzing the impact of satura-

tion terms and delays and particularly focusing on the stabilizing effect induced by the

presence of AVs in a mixed autonomous/human-driven environment.
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A feed-forward neural network can be interpreted as a discrete switched system

xk+1 = fσ(k)(xk) k = 1, . . .

where the function fσ(k) at the k-th layer is chosen from an infinite family of functions

F := {fi}i∈I , according to a switching rule σ that is determined by the training process

to minimize a loss function. In particular, different issues related to the training or reli-

abitity of Neural Networks can be intrepreted in terms of properties of the system, e.g.

“oversmoothing in graph neural networks” [6] can be studied in terms of existence and

convergence to fixed points of the system, while “exploding gradients” [8] and “vulner-

ability to adversarial attacks” [2] can be seen as a stability problem of the system.

When the switching rule is unknown the stability of a switched system is established

by considering the worst possible case. This topic has been extensively investigated in

the linear case, where the stability or instability of the system can be established in terms

of the joint spectral radius of the underlying family of matrices [4]. However, neural net-

works used in modern deep learning make use of nonlinear activation functions and thus

require a different theoretical investigation.

In this talk we present our investigation of switched systems that alternate maps

from a (possibly infinite) class F := {fi}i∈I of nonlinear functions, following an un-

known switching rule σ. In particular, we focus on families of sub-homogeneous nonlin-

ear functions having an invariant cone, where they preserve the natural ordering induced

by the cone. Such functions are naturally non-expansive with respect to proper metrics,

and their spectral properties have been studied in the nonlinear Perron-Frobenius the-

ory [5]. We point out that the subhomogeneous hypothesis is not restrictive in deep

learning applications since activation functions used by neural networks are typically sub-

homogeneous [10]. Similarly, the order-preserving hypothesis has deserved attention in

different recent applications, like deep equilibrium models [9] and investigation of the

cut-off phenomenon [1].

For such a family of function, sayF , we introduce the notion of nonlinear joint spectral

radius (JSR)

ρ(F) = lim sup
k

sup
f∈Σk(F)

‖f‖ 1
k
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where Σk(F) is the set of functions that are composition of k functions in F . Then, we

prove that the JSR establishes the stability or instability of the system. In particular

Theorem 1.

• If ρ(F) < 1, then all the possible orbits of the system are asymptotically stable.

• If ρ(F) > 1, there exists some divergent orbit.

After that, we investigate properties of the nonlinear JSR. In particular, first we prove

a dual formulation of the JSR in terms of monotone prenorms [7] of the functions in F

ρ(F) = inf
Θ Monotone

Prenorm

sup
f∈F

Θ(f),

where a monotone prenorm is an absolutely homogeneous, positive definite functional

that preserve the ordering induced by the cone.

Second, we recall that the nonlinear Perron-Frobenius theory [5] introduces a notion

of joint spectral radius ρ(f) of any function f ∈ Σ(F), where Σ(F) denotes the semi-

group generated byF . We use this information, to investigate a third formulation of the

JSR of F
ρ(F) = lim sup

n
sup

f∈Σk(F)

ρ(f)
1
k ,

where we prove that the equality holds under generic hypotheses.

Finally, we present an algorithm devoted to the computation of the nonlinear JSR. Our

algorithm is inspired by the polytope algorithm used in the linear case [3] and iteratively

builds a monotone extremal prenorm for the system in terms of the Minkowski functional

of a finitely generated subset of the cone. To conclude, we use the different formulations

of the JSR to provide sufficient conditions for the convergence of the algorithm.
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The approximation of high-dimensional functions is an extremely challenging task.

Classical methods, based on a mesh, suffer in general from the so-called curse of dimen-

sionality — their complexity has an exponential growth O(ε−D) as the accuracy ε tends

to zero inD dimensions — and thus in practice they are only suited for addressing lower-

dimensional problems. On the other hand, machine learning techniques that are mesh-

free, and in particular (deep) neural networks, seem to be able to overcome this issue for

different kinds of high-dimensional problems, especially in the context of image analysis

and pattern recognition.

Kolmogorov [3] proved that any multivariate continuous function can be written in

terms of univariate continuous functions. More formally, the Kolmogorov superposition

theorem (KST) states that any continuous function f : [0, 1]D → R can be decomposed

as

f(x1, . . . , xD) =

2D+1∑
i=1

Φi

(
D∑

d=1

Ψi,d(xd)

)
,

withΨi,d andΦi univariate continuous functions on [0, 1], called inner and outer functions,

respectively. Theoretical connections of the KST with neural networks started with the

work of Hecht-Nielsen [2], where the inner and outer functions of the KST were inter-

preted as activation functions of a neural network. Later, Kůrková discussed the rele-

vance of the KST [4] and provided a direct proof of the universal approximation theorem

of multilayer neural networks based on the KST [5]. Recently, in [7], Montanelli and Yang

applied the KST in the context of ReLU neural networks in order to get round the curse

of dimensionality.

In this talk, we focus on a specific neural network model, called ExSpliNet, and discuss

its expressivity. The ExSpliNet model, introduced in [1], is a model that combines ideas of

Kolmogorov neural networks, ensembles of probabilistic trees, and multivariate B-spline

representations. Inspired by the KST, an ExSpliNet function has the form

T∑
t=1

ΦM,q
wt

([ D∑
d=1

ΨN`,p`

vt,`,d
(xd)

]
`=1,...,L

)
,

where univariate splines ΨN`,p`

vt,`,d
are used as inner functions that feed L-variate tensor-

product splines ΦM,q
wt as outer functions, all of them represented in terms of B-splines.
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The ExSpliNet model can be efficiently evaluated thanks to the computational proper-

ties of B-splines. Moreover, it is explicitly differentiable when taking B-splines of degrees

at least two. In [1], a preliminary theoretical study of the universal approximation proper-

ties of ExSpliNet was carried out. Specifically, for the two cases L = 1 and L = D, it was

shown that ExSpliNet has the ability of a universal approximator. Both approximation

results are not completely satisfactory yet. Indeed, the proof of the former case is not

constructive, while the ExSpliNet approximation considered in the latter case is affected

by the curse of dimensionality.

We continue the analysis of the expressivity of the ExSpliNet model and provide two

constructive approximation theorems that mitigate the curse of dimensionality, so im-

proving upon the limitations encountered by the approximation results in [1].

Firstly, following ideas from [7] and using the explicit spline error bound in [6], we are

able to have a fully constructive proof for a particular subset of multivariate continuous

functions. Specifically, we show that such a function can be approximated up to an error

ε by an ExSpliNet function with weight complexity O(ε− log2(2D+2)) in D dimensions, so

the curse of dimensionality is lessened.

Secondly, inspired by the neural network construction in [8] and using the explicit

spline error bound in [9], we show a result on the approximation capabilities of the Ex-

SpliNet model for multivariate generalised bandlimited functions. This time, the ExSpli-

Net model completely overcomes the curse of dimensionality. Specifically, a D-variate

generalised bandlimited function can be approximated up to an error ε by an ExSpliNet

function with weight complexityO(ε
−2
q+1−2), where q can be chosen independently ofD.
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Microarray and RNA-sequencing technologies are powerful tools for the analysis of

gene expression across the genome and transcriptome, allowing the comprehensive stu-

dy of transcriptional changes associated with different biological conditions. A critical

application of these high-throughput gene expression technologies is the identification

of differentially expressed genes (DEGs) between different biological states (disease ver-

sus normal, treatment versus control), different cell populations, or across different time

points. Typically, a gene is considered to be differentially expressed if the observed differ-

ence or change in expression levels or read counts between different experimental con-

ditions is statistically significant. The identification of DEGs helps to uncover the under-

lying molecular mechanisms that differentiate these conditions. While DEGs are crucial

in transcriptomic research, there is still a need to determine the most effective methods

for identifying genes that are significantly differentially expressed between two or more

groups of samples, tissues, or cell populations. Numerous statistical methods and data

analysis pipelines have been developed to identify DEGs using various predefined statisti-

cal or filtering thresholds for gene selection [3, 7]. These analyses often focus on pairwise

group comparisons, providing limited insight into the underlying biology by excluding po-

tential differences in other conditions. Such a restrictive analytical framework inherently

limits the discovery of biological variation that may be present in more complex experi-

mental designs. In addition, many analytical pipelines are heavily tailored to the platform

used for transcriptomic analysis and may not be easily adaptable to other types of data.

The current methodological landscape also lacks the capability to perform unsupervised

DEGs analysis, which is essential for exploratory data-driven discovery.

We propose a mathematical framework based on multi-factor nonnegative matrix fac-

torization (NMF) [5] to identify genes that exhibit differential expression across two or

more distinct experimental conditions. Our data analysis pipeline is designed to apply

this differential expression framework consistently across different experimental designs

and high-throughput technologies. We consider a gene expression matrix X ∈ R+
n×m,

wheren is the number of samples (which may represent different patient groups, tissues,

experiments, or time points) andm is the number of genes. To compare specific experi-

mental conditions, we propose a semi-supervised framework based on three-factor NMF,

which can be formulated as a constrained penalized optimization task:

min
U≥0,S≥0,V≥0

D(X|USV>) + λUP1(U) + λSP2(S) + λVP3(V)
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where D(·, ·) : Rn×m
+ × Rn×m

+ → R+ denotes some divergence function, which evalu-

ates the goodness of fitting; U ∈ R+
n×k, S ∈ R+

k×r and V ∈ R+
m×r are the factors

of data low-rank representation, P1 : Rn×k → R, P2 : Rk×r → R, P3 : Rm×r → R
codify regularization constraints to enforce specific properties on the factor matrices,

while λU, λS and λV are some positive regularization parameters. For the DEGs task, we

consider the generalized Kullback-Leibler divergence as the cost function and set k = r
(k, r < min(n,m)) equal to the number of different conditions we want to compare.

The sample label information is encoded in the structure of the factorU. We imposeU to

be a binary matrix representing sample clusters, where Uij ∈ {0, 1} and
∑k

j=1 Uij = 1.

This ensures that each sample is assigned to exactly one cluster. Imposing sparsity and

orthogonality constraints on the columns of V ensures that the extracted list of DEGs

has minimal or no overlap of genes. Reconstruction error is minimized by using an al-

ternating scheme with an appropriate choice of the multiplicative update rules [6]. We

extract DEGs by considering genes that have relatively large coefficients in each biologi-

cal process via the nonnegative factor V obtained from the decomposition. For discovery

purposes, when sample label information is not available, the proposed three-factor NMF

framework reduces to the standard unsupervised two-factor NMF [2] through the trans-

formation U ← US. Two-factor NMF is a robust method for class discovery, which, in

turn, allows for the identification of DEGs. This technique enables the detection of un-

derlying patterns and structures within gene expression data that may not be apparent

using traditional approaches. To gain functional insights, DEG lists are further analyzed

by examining gene interaction networks. This approach aims to elucidate their role in bi-

ological processes, identify core pathways, reveal functional relationships, and improve

the interpretability of results.

We applied the proposed DEGs identification framework to two oncology case stud-

ies. In the first case, we used the framework to develop a DEGs signature for transcrip-

tomic stratification of mediastinal gray zone lymphoma (MGZL), a rare and diagnosti-

cally challenging lymphoma with features overlapping with primary mediastinal B-cell

lymphoma (PMBL) and classical Hodgkin lymphoma (CHL) [4]. The framework, used in

an unsupervised manner, generated a robust gene expression-based signature that helps

categorize MGZL based on its transcriptomic similarity to either CHL or PMBL, potentially

leading to improved diagnostic accuracy and therapeutic strategies. In the second case

study, we apply the pipeline to extract two DEGs signatures from profiles representative

of wild-type and resistance MCF-7 cells [1]. Subsequent pathway analysis revealed key

genes, such as MAOA, IL4I1, RRM2, DUT, NME4, and SUMO3, as novel elements in resis-

tance pathways. This analysis enhances our understanding of resistance mechanisms in

MCF-7 cells and may guide the development of more effective treatments.
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Many applications in signal and image processing, wireless communications and ma-

chine learning, can be formulated as non-convex and non-smooth optimization problems.

From the perspective of the mathematical model, they are computationally challenging

to solve due to the presence of multiple local stationary points that are not necessarily

global optima, while from the algorithmic point of view, the difficulties reside in the sen-

sitivity to initialization, low efficiency, and critical convergence.

In this work, we address the following generic non-convex parametric optimization

problem

x∗ ∈ arg min
x∈RN

{J (x; a, γ1, γ2, . . .) := γ1J1(x; a) + γ2J2(x) + γ3J3(x) + · · ·+ JM (x)} ,

where the cost function J is parameterized by a set of parameters γ1, γ2, .. which bal-

ance the action of M different energy terms. The function J is defined by the sum of

a non-convex parametric term J1(x; a), which makes J (x; a, γ1, γ2, . . .) eventually non-

convex, and other convex smooth energy terms J2(x),J3(x), . . . ,JM (x).
The parameter a tunes the degree of non-convexity of the functional J1(x; a) and in the

following, we will assume that setting a = 0 ensures J1(x; a) to be convex and non-

convex for a > 0. In [4], there are popular examples of (sparsity-promoting) parameter-

ized non-convex penalty functions.

Different strategies have been proposed to tackle these non-convex and eventually non-

smooth optimization problems: the underlying idea is to convexify the objective function

by using the convex envelope or by applying, if possible, a ConvexNonConvex strategy

[4] such that, although the functional contains a non-convex term, the overall functional

is convex. An other approach, the “Graduated NonConvexity” (GNC), term coined by

Blake and Zisserman in [1], solves a well-constructed sequence of non-convex problems

of increasing complexity to gradually approach the target solution reducing the problem

of local minimizers by estimating a good initial guess[6].

Combining the idea of GNC with an automatic setting of the parameters, we propose

our Predictor-Corrector Algorithmic Framework, also inspired by the Predictor– Correc-

tor (PC) method [2], designed to integrate ordinary differential equations, which uses a

suitable combination of an explicit and an implicit technique to improve the approxima-

tion accuracy while obtaining better convergence characteristics.

Given a non-convex optimization problem in the above form, the proposed general PC
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algorithmic framework consists in estimating a good starting point ŷ as the global mini-

mizer of the convex functional J (x; a = 0, γ̂1, γ̂2, ..), where γ̂1, γ̂2, .. are the optimal val-

ues for the multi-parameters that characterize the cost function J obtained by minimiz-

ing a context-aware function E(γ1, γ2, . . .) : RM−1 → R which represents properties of

the specific application context. The global minimizer ŷ is the output of the Predictor()
step and it’s used as inizialization for the iterative procedure used for solving the non-

convex Corrector() minimization of J (ŷ; a > 0, ̂̂γ1, ̂̂γ2, ..), where the parameter a is

estimated imposing an optimal non-convexity degree and ̂̂γ1, ̂̂γ2, .. are computed by ap-

plying the same strategy proposed for γ̂1, γ̂2, ... The convergence to a local (and, possibly,

global) minimizer of the original optimization problem with the parameters a, γ1, γ2, . . .
selected is therefore favored and accelerated by having a good initialization.

An example of application is the additive decomposition of a 1D signal into semanti-

cally distinct components, that is usually addressed as a non-convex optimization prob-

lem where each energy term is suitable to capture a specific component. In particular, we

estimate the signal components cartoon c, smooth s, and oscillatory o of a given sampled

signal f ∈ RN by solving the following optimization problem

{ĉ, ŝ, ô} ∈ arg min
c,s,o∈RN

{
γ1

N∑
i=1

φ (|(Dc)i|2; a) +
γ2
2
‖Hs‖22 + ‖o‖G

}
, (24.1)

subject to : c+ s+ o = f ,

N∑
i=1

ci = 0 , (24.2)

where the penalty function φ is the minimax concave (MC) penalty function φ : R→ R+

with parameter a ∈ R+ and φ(t; 0)= lim
a→0

φ(t; a) = |t|, D,H ∈ RN×N are finite difference

matrices discretizing the first- and second- order derivatives and the G-norm ||o||G [5] is

defined as

‖o‖G := inf
{
‖g‖∞

∣∣ o = −DTg, g ∈ RN
}
,

with ‖g‖∞ := maxi |gi|. The PC framework is successfully applied to the signal de-

composition problem, where a convergent ADMM-based algorithm is proposed to solve

the general minimization problem in (24.1)-(24.2) and a cross-correlation function which

measures the separability among the different components, properly captures the opti-

mal parameters γ1, γ2 of the cost function [3].
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Introduction. In this work we are concerned with the numerical computation of Wasser-

stein distance (WD) and Generalized Wasserstein distance (GWD) in the context of traf-

fic flow models. As for all dynamical systems, the study of the sensitivity of the models

can be realized measuring the ‘distance’ between two solutions obtained with different

inputs (like, e.g., any of the model parameters, initial conditions, boundary conditions,

etc.). This allows one to understand their impact on the final solution, and ultimately

quantify the degree of chaoticity of the system. The question arises which distance is

more suitable to this kind of investigation. It is by now well understood thatLp distances

do not catch the natural concept of distance among traffic (vehicle) densities, see, e.g.,

the discussion in [3, Sec. 7.1], while the WD appears more natural in the context of traffic

flow, see, e.g., [1, 3]. The drawback is that WD is limited to balanced mass distribution

(equal masses), while real traffic problems often need to consider scenarios with a dif-

ferent amount of vehicles, especially because of different inflow/outflow at boundaries.

This suggests to move towards GWDs, which allows to deal with unbalanced mass distri-

butions. We consider the three GWDs introduced by Figalli & Gigli (FG) [4], Piccoli & Rossi

(PR) [5], Savaré & Sodini (SS) [6], and we propose three numerical approaches for the ap-

proximation of these distances: the first two approaches are based on the reformulation

of the original problems in terms of linear programming problems, while the third one is

based on a gradient-free descent method.

Numerical comparison. In the following test we compare the three GWDs in order to

understand which one is the most suitable in the context of traffic flow modeling. Denot-

ing byχ the indicator function, we consider the case of two time-dependent distributions

with parameters α, β, η > 0,

ρS(x, t) = αχ[−t−η,−t+η](x), ρD(x, t) = βχ[t−η,t+η](x), 0 ≤ t ≤ T (25.1)

in the domain X = [−T − η, T + η] (T being the final time). The two step functions

start with perfectly overlapping support, then supply mass moves leftward while demand

mass moves rightward, until they both reach the boundary of the domain.

Fig. 25.1 shows the behavior of the three GWDs between ρS and ρD as defined in (25.1),

as a function of time, with α ∈ {1, 2}, β = 2, η = 1, T = 4. This comparison test
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Figure 25.1: Test on numerical comparison.

allows us to sketch some preliminary conclusions. First of all, the SS approach seems

to be computationally unfeasible. In fact, it is impossible to deal with a reasonably fine

discretization grid. Second, SS and PR approaches share withLp an important drawback:

they saturate when distributions do not overlap and they are far enough to each other.

This can be a problem in some scenarios. Lastly, FG approach has an important feature:

it tends to diminish if distributions are close to the boundaries, even if they are very far

from each other. On first glance, this seems to be an issue, but it can be also be seen as a

good point. Basically it implies that what happens near the boundaries is less important

than what happens on the rest of the road. Considering the fact that boundary conditions

are typically unknown in traffic flow modeling, it could make sense to give priority to that

part of the road which is less or not at all influenced by boundary conditions.

Sensitivity to boundary conditions. In this test we investigate the sensitivity to bound-

ary conditions. In the same spirit of [2], we assume that the time interval is divided in

two subintervals: [t0, 0] and (0, T ], where t = 0 corresponds to the time the simulation

is actually performed. We compare two vehicle distributions which evolves through the

LWR model: the “exact” solution ρS and the “predicted” solution ρD. The first is obtained

by using the exact boundary fluxes FIN(t), FOUT(t), randomly generated, in the whole in-

terval [t0, T ]. Instead the second is obtained by using flux boundary data until time t = 0
and then by using the constant predicted average values

F̂IN =
1

T

∫ T

0

FIN(t)dt, F̂OUT =
1

T

∫ T

0

FOUT(t)dt,

until time T . At any time t, the vehicle distributions ρS(·, t) and ρD(·, t) are numerically

approximated by means of the Godunov scheme and they are compared computing the

GWDs introduced by FG and PR.
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Fig. 25.2 shows a snapshot of the simulations at times t = 12 (left) and the GWDs

between ρS(·, t) and ρD(·, t) at any time (right).
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Figure 25.2: Test on sensitivity to boundary conditions.

We can conclude that the FG approach seems to be more suitable for the context of

vehicular traffic because it better catches the growth of the error when the difference

between the two vehicle distributions spreads towards the inside of the road.
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Introduction
In recent years, with the evolution of computer systems and sophisticated software, ad-

vanced technology has been integrated into many fields related to industry, ranging from

construction, transportation and manufacturing to business intelligence, education and

healthcare.

In the continuous pursuit of technological advancements, character recognition is

emerging as a new testing ground for various advanced solutions. The ultimate goal,

shared by all developers of this technology, is to leverage innovation in all its forms to

enhance the tools of tomorrow. This emerging technology is set to become a key com-

ponent in the future development of recognition systems.

Automatic character recognition is a broad field of research. When applied to a spe-

cific language, such as Tamahaqt within the Amazigh language family, it requires a deep

understanding and cognitive expansion of the language, which is spoken by a minority of

the population in North Africa.

Tamahaqt, the language of the Tuaregs, faces significant challenges in terms of preser-

vation and education. Learning this language for knowledge purposes is hindered by a

lack of available tools and information.

In this project, we aim to develop advanced tools for processing the Tamahaqt dialect

of the Amazigh language, addressing significant challenges in computational linguistics.

The Tamahaqt dialect, with its rich morphology, lacks sufficient tools for automatic pro-

cessing. Creating effective tools through extensive research is essential for preserving

and promoting the Tamahaqt dialect and Amazigh culture.

Materiel requirements and results
This work aims to address the lack of documentation and data on the Tamahaqt language

by using automatic character recognition through CNN. By exploring various aspects of
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this issue, we seek to provide a deep understanding and propose perspectives for the fu-

ture development of this technology. We focus on the use of CNNs, which are particularly

effective for image recognition, including Tamahaqt characters. To overcome the lack of

resources, we have adopted a structured methodology, collecting data from books [2]

and final year theses from the University of Tamanrasset [4, 6].

Summary of OCR Functionality
Optical Character Recognition (OCR) systems use advanced technologies to extract infor-

mation from scanned documents and convert it into text files. They identify characters

by comparing black and white colours, then convert them into ASCII text. Typical steps

in ORC processing are as follows:

Image Preprocessing. Enhancing image quality for better recognition, including resiz-

ing, binarization, noise removal, and normalization.

Segmentation. Identifying and separating characters by extracting local features.

Character Recognition. Comparing normalized characters with a library of shapes to

find the most likely match, using techniques like feature classification, metric methods,

and static methods.

Post-processing. Using linguistic and contextual approaches to minimise errors, with

systems based on rules or statistical methods.

Using CNNs for Character Recognition
CNNs are particularly effective for character recognition due to their ability to automati-

cally extract complex features from images.

Preprocessing. The images of characters in our dataset were preprocessed to stan-

dardise size and improve image quality (binarization, resizing, etc.).

Training. A large labelled dataset of characters was used to train the CNN. The net-

work learns to recognise the distinctive patterns of each character through thousands of

examples.

Prediction. Once trained, the CNN model can take an image of a character as input

and predict, with a certain probability, which character it corresponds to.

Implementation Methodology
For the implementation methodology, we will present the various stages of our source

code, which are: (i) importing the necessary libraries, (ii) importing the dataset, (iii) pre-

processing the images in the dataset, (iv) initializing hyperparameters, constructing the

CNN architecture, (v) compiling and tuning the model, and (vi) evaluating the model.

The loss and accuracy values for both training and validation are plotted in Figure 26.1,

with red representing training and green representing validation. The loss curve shows a

decrease in training loss from 17.9457 to 15.9152, while the validation loss decreases from

15.9019 to 15.8160. For what concerns accuracy, training remains stable at approximately

0.0103, and validation accuracy increases slightly from 0.0116 to 0.0124.

These results suggest that the model is gradually improving its performance on the

validation set, albeit marginally.
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Figure 26.1: Results visualisation

Conclusion and future works
Our study investigated automatic character recognition for the Tamahaqt language us-

ing Python and Convolutional Neural Networks (CNNs). After detailing the tools and de-

velopment environment, we conducted experiments by importing packages and data,

performing preprocessing, and applying the CNN model.

The results indicate limited performance, primarily due to insufficient data and hard-

ware constraints. To address these challenges, we recommend utilising cloud computing

services such as Google Cloud Platform, which can provide the necessary computational

power and enhance prediction accuracy, provided there is an adequate database for deep

learning methods.
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Fracture represents one of the most severe failure modes for solid materials or struc-

tures. Accurately predicting fracture nucleation and propagation is crucial in engineering,

especially from the standpoint of safety. This requirement has led to the development of

several theoretical models and numerical methods.

Phase-field modeling is based on the variational formulation of brittle fracture [3], and

the evolution of cracks is posed in terms of the equilibrium configurations of the total

energy, i.e. the sum of elastic and fracture energy. The description of the cracks depends

on a damage parameter d ∈ [0, 1], assessing the integrity of the material, together with

an internal length parameter ε, controlling the width of the transition layer between d =
0 and d = 1. These two values of the phase field parameter correspond respectively

to sound material and fracture. The phase-field approach relies on the solid base of Γ-

convergence [1, 2] and specifically on the convergence of the phase-field energy to the

sharp crack energy, as the internal length ε vanishes. There are many choices for both

the elastic and fracture energy functionals. In [4], we focus on the fracture energyK and

propose a novel model. In literature it is customary to call:

1. K(d) =
∫
Ω
ε−1φ(d) + ε|∇d|2 dx,

2. K(d) =
∫
Ω
ε−1φ(d) + ε|∇d|2 + ε3|∆d|2 dx,

second- and fourth-order energies respectively, making reference to the associated Euler-

Lagrange equations. Simulations based on high-order functionals are generally more ac-

curate in approximating dissipated energy [5], and they allow the use of larger mesh sizes,

offsetting the computational costs associated with second-order derivatives.

The most common choices for φ are φ(d) = d and φ(d) = d2, corresponding to the

AT1 and AT2 functionals, respectively. From a mechanical standpoint, AT1 functionals

typically exhibit better properties than AT2, as they result in a clear linear elastic regime

before the onset of fracture [7]. On the contrary, AT2 generates damage at arbitrarily

small values of stress. Moreover, for given values of internal length and mesh size the

damage profile around the crack is usually narrower with AT1.

Our goal in [4] was to combine both these advantages and propose a novel AT1 fourth-

order phase-field model for brittle fracture, within an isogeometric framework, which

provides a straightforward discretization of the high-order term in the fracture energy

functional.

For the introduced AT1 functional, we first proved aΓ-convergence result (in both the

continuum and discretized isogeometric setting) based on a careful study of the optimal
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transition profile. To do so, we defined the crack surface energy as follows

Kρ(d) =
1

cρ

∫
Ω

ε−1d+ ε|∇d|2 + ρ ε3|∆d|2 dx,

where ρ > 0 is a parameter weighting the effects of the high-order term. Technically,

previous results in the literature, see e.g. [1, 6] do not apply here due to the combination

of the high order term and the constraint d ∈ [0, 1]. Hence, we developed a novel line of

proof.

The value cρ is generically characterized as a function of the optimal profile d∗, that

needs to be explicitly computed. Nevertheless, the constraint d ∈ [0, 1] does not allow

to directly employ the linear ODE resulting from the Euler-Lagrange equation. Therefore,

we proceed in the following way:

• we introduce an auxiliary localized unconstrained problem, whose solution dR is

characterized by the ODE with suitable boundary conditions on {0, R} and can be

explicitely computed;

• since the solution does not satisfy the constraint dR ∈ [0, 1], not all of these profiles

are admissible (see Figure 27.1 left) and we prove that the optimal profile is the

admissible solution with the largest support;

• we provide an explicit formula for the width of the support of the optimal profile

from which we finally get the optimal profile d∗ and the value of cρ.

This approach is quite general and indeed it applies also to the other AT1 functionals in

the literature.

We carried out a detailed study of the numerical performance of the model. For AT1,

we linked the mesh size to the finite support of the optimal profile, and just adopted

the same choice for AT2 (since it has infinite support). As can be seen in Figure 27.1, the

optimal profile in our model has wider support than that in the second-order model (ob-

tainable for ρ → 0) so a coarser mesh size can be employed to solve them. We con-

sidered different benchmarks and we report as an example in Figure 27.2 the results for

the DCB test. In terms of effective toughness, the proposed fourth-order AT1 model is

more accurate than the other AT models examined (red box in Figure 27.2). Moreover,

as anticipated, once the accuracy is fixed, the model allows to employ larger mesh sizes

entailing a lower computational cost (blue box in Figure 27.2).
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This study explores the development of a computational model designed for the opti-

mization of textual content through systematic content reduction. The core objective is

to enhance the comprehension of information presented in texts by reducing content

while retaining essential meaning. Two key hypotheses guide this research. The first

hypothesis posits that it is possible to construct a computational model capable of op-

timizing text via content reduction, improving the reader’s ability to grasp the semantic

depth of the material. The second hypothesis asserts that this model is not merely a the-

oretical construct but can also be practically applied across various real-world scenarios,

enhancing text accessibility and clarity in diverse contexts.

In analyzing textual information, the model treats text as a composition of fundamen-

tal elements such as paragraphs, sentences, words, and even individual characters or bits.

The model decomposes the text into these basic units, facilitating a granular analysis of

the informational content carried by each element. Information within a text is defined as

a set of elements, where each element contributes to the total information. The sum of

these contributions always equals one, indicating that the overall information within the

text is distributed among its individual components. Although this distribution might be

assumed to be uniform, this assumption often does not hold true in practice. Depending

on the reader’s objectives and the context, some text elements carry more informational

weight than others.

A key feature of the model is its assumption of linear relationships between the text

elements, allowing for efficient computation of information distribution. However, the

model also recognizes that in certain cases, these relationships might be non-linear, ne-

cessitating more complex computational strategies than simple summation.

The comprehension of textual information is evaluated through a metric designed to

measure the reader’s ability to answer questions based on the text. Textual comprehen-

sion is represented by a score, that accounts for the correct answers derived from the

text’s information. The score is computed by analyzing the proportion of questions that

can be answered using the available information weighted by the significance of each

text element.

The quality of text reduction, represented by a metric, is another critical aspect of the

model. This metric evaluates the balance between the length of the reduced text and the

information loss incurred during the reduction process, also allowing for the comparison
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of the quality of different versions of text reductions.

The model also outlines fundamental properties that guide its operation. For instance,

optimization by removing redundant information is based on identifying and eliminating

semantically repetitive elements that do not contribute additional information. Similarly,

enhancing comprehension by removing contradictions involves detecting and eliminat-

ing elements that introduce semantic inconsistencies within the text. The goal of the

model is to reduce the given text to its optimal version based on the context by remov-

ing all repetitive and contradictory elements. The described definitions and properties,

which lead to the definition of the optimal text, provide evidence in support of the first

hypothesis, demonstrating that a computational model can effectively optimize textual

content through systematic reduction and also improve comprehension.

Practical applications of the model are diverse, ranging from summarization of text

based on context (e.g., answering specific questions) to transforming large, unspecial-

ized textual datasets into more specialized ones. This transformation facilitates the train-

ing of domain-specific language models by breaking down large datasets into smaller,

more focused datasets. Additionally, the model can be used to explore differences in

text perception between language models and human readers, offering insights into how

different audiences interpret the same text.

These applications demonstrate that the computational model has practical utility,

thus validating the second hypothesis, which posits that the model is applicable to real-

world scenarios.
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Antimicrobial Resistance (AMR) poses a significant global health challenge [5], neces-

sitating robust surveillance methods to monitor its prevalence and trends across different

hospitals, regions or countries. According to [3], “Setting up country-level surveillance of

resistance and consumption is vital for understanding the impact of AMR and to reduce

the spread of resistant pathogens”.

This work introduces funnel plots [7] as a statistical process control method [4] which,

unlike tools designed to identify increases in the AMR percentage, detects when a re-

gion’s AMR percentage deviates significantly from the global average, thus indicating an

anomaly. Control limits with a prescribed false alarm rate are derived under the assump-

tion that the distribution of regional AMR percentages is well approximated by a Gaussian

with variance inversely proportional to the number of tested isolates.

The main objectives of this work are

(a) to define a model of natural variability of AMR that considers the number of per-

formed tests and provides alarm limits;

(b) to develop a diagnostic tool for statistically monitoring AMR at country level, as re-

ported in the GLASS (Global Antimicrobial Resistance and Use Surveillance System)

dashboard [6];

(c) to study how the distribution of antimicrobial resistance between countries de-

pends on the Gross Domestic Product (GDP).

In order to achieve these objectives, we propose the following mathematical mod-

eling. Let {1, . . . , i, . . . , n} be the countries that belong to WHO Europe region, and let

(xi, yi, gi) the observations of the i-th country, where xi denotes the number of tested

isolates (AST), yi the percentage of AMR on the isolates and gi the GDP (Gross Domestic

Product).

AMR resistance data for year 2020, pertaining to the WHO European region, were

acquired from the GLASS dashboard, which presents global antibiotic consumption and

resistance data for countries, territories, and areas, enrolled in GLASS. For each pathogen-

antibiotic pair, the GLASS dashboard provides the number of performed Antibiotic Sus-

ceptibility Tests (AST) and the corresponding resistance percentage for each country.

GDP data in US dollars ($) for year 2021 have been acquired from the World Bank DataBank

[1].
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First, for each pathogen-antibiotic pair, we studied the relationship between the GDP

and the AMR percentage of the WHO European countries. Based on the visual inspection

of the scatter plot {(gi, yi)}i=1,...,n, we modelled the relationship using the following

monotonic function.

y = f(g) =
eβgα

1 + eβgα

where α < 0 and β > 0.

Second, we aimed to construct a surface whose g-sections are funnel plots, hence

defined by

yg(x) = θg ± zp

√
φ
σ2
g

x
= θg ± zp

√
φ
θg(1− θg)

x
∀g

where zp is such thatP(Z ≤ zp) = 1−p for a standard normal variableZ. For each value of

the GDP g, the parameter θg is a reference value that specifies the expectationE[y|g], i.e.

the centerline of the associated funnel. The multiplicative parameter φ is included in the

model to account for overdispersion with respect to the variance θg(1− θg)/x predicted

by a simple binomial model [8]. Parameters α and β were estimated by weighted linear

squares, with the weights corresponding to the number of AST, whereas θ and φ were

derived using f . In particular, θg = f(g) and φ = 1
n

∑
i

(yi−fβ(gi))
2

fβ(gi)(1−fβ(gi))/xi
.

Specific results are shown in Fig 29.1. The picture refers to Escherichia Coli pathogens

that are resistant to Ceftriaxone. The left panel shows a standard 2D funnel plot that does

not account for GDP, whereas the right panel shows a 3D funnel plot derived according

to the proposed model. In the left panel, the red curves represent the 99, 8% alarm limits

that, in the right panel, become surfaces, whose shape changes with GDP.

The charts are used as follows: when a point lies within the alarm limits, it is regarded

consistent with natural variability. Conversely, when it falls outside the funnel, it high-

lights the possible presence of a special cause that warrants further investigation (with

the probability of false alarm rate specified by zp).

In the left panel, it appears that a single funnel is not adequate, as seen also from the

large overdispersion parameter, equal to 81.11. The new model overcomes the short-

comings of the standard formulation and also identifies a critical situation. The GDP-

dependent centerline, ranging between 0.1 and 0.4, explains better the data, as wit-

nessed by the decrease of the overdispersion. In the right panel, moreover, there is a

point outside the alarm limits, namely Italy, a finding consistent with the literature [2].

Possible explanations include a higher number of persistent infections (beacuse of poor

practices, or environmental factors) or inconsistencies in the definition of indicators.

Finally, the proposed approach offers a very effective visual tool that can highlight

situations that deserve further investigation and that other methods may overlook. For

example, the WHO GLASS website uses boxplots that neglect the AST size parameter.

Consequently, an anomalous AMR such as the Italian one could be mistaken as consistent

with the general distribution.
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Figure 29.1: Specific results for Ceftriaxone-resistant Escherichia coli pathogens are

shown. The left panel shows a standard funnel plot, while the right panel illustrates the

proposed model. Left: a single 2D funnel appears insufficient to model the phenomenon,

as indicated by the large overdispersion parameter. Right: the new 3D model better de-

scribes the distribution of the data and highlights Italy as being outside the alarm limits.

104



References
[1] T. W. Bank. GDP per capita (current US$). data retrieved from World Development

Indicators, https://data.worldbank.org/indicator/NY.GDP.PCAP.CD. 2023.

[2] A. Cassini et al. “Attributable deaths and disability-adjusted life-years caused by in-

fections with antibiotic-resistant bacteria in the EU and the European Economic

Area in 2015: a population-level modelling analysis”. In: The Lancet infectious dis-

eases 19.1 (2019), pp. 56–66.

[3] S. Kumar. “Antimicrobial resistance: A top ten global public health threat”. In: EClin-

icalMedicine 41 (2021), p. 101221.

[4] M. A. Mohammed, K. Cheng, A. Rouse, and T. Marshall. “Bristol, Shipman, and clin-

ical governance: Shewhart’s forgotten lessons”. In: The Lancet 357.9254 (2001),

pp. 463–467.

[5] W. H. Organization et al. “Antimicrobial resistance surveillance in Europe 2022–2020

data”. In: (2022).

[6] W. H. Organization. Global antimicrobial resistance and use surveillance system (GLASS)

report 2022. World Health Organization, 2022.

[7] D. J. Spiegelhalter. “Funnel plots for comparing institutional performance”. In: Statis-

tics in medicine 24.8 (2005), pp. 1185–1202.

[8] D. J. Spiegelhalter. “Handling over-dispersion of performance indicators”. In: BMJ

Quality & Safety 14.5 (2005), pp. 347–351.

105

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD


About clustering of time series: A case study using real traffic data

Davide Moretti

Istituto per la Applicazioni del Calcolo “M. Picone” (IAC), CNR, Rome, Italy

KEYWORDS: clustering · time-series analysis · traffic data · SAX

MSC2020: 90B20 · 68T99

Advancements in technology have enabled extensive collection and storage of data

from real-world applications, forming the basis for time series, which are data that are

recorded in an orderly fashion and correlated to a temporal variable. Due to the intricate

nature of temporal information, valuable patterns and structures are often concealed by

a superficial analysis, making the exploration of time series an essential pursuit. Such

a large amount of information provides an opportunity for researchers to perform data

mining in an attempt to extract all possible meaningful pieces of knowledge.

Our work focuses on real-world vehicular traffic data provided by Autostrade Alto

Adriatico S.p.A. Here, the time series represents flux data obtained from fixed sensors

deployed on four highways in the northeastern part of Italy, which shape are displayed

in Figure 30.1. Such yet-to-be-published data is part of a bigger dataset (detailed in [3])

provided to IAC-CNR as part of the collaboration with Autostrade Alto Adriatico. Our ulti-

mate goal is to perform clustering on this data to obtain meaningful clusters, enhancing

our general understanding of the common traffic patterns, and also to help the creation

of a standard dataset for future and existing projects like [3]. Clustering is a well-known

data mining technique where unlabeled data are partitioned into homogeneous groups,

without a priori knowledge of said groups’ definitions, following a notion of similarity.

Further progress can be made by using these newly discovered traffic patterns as a base-

line for anomaly detection.

The first step in time-series clustering [1] is choosing an adequate representation of

time series, as it affects the accuracy of the final results. Most raw time-series data is

highly dimensional and noisy, and performing clustering directly can lead to counter-

intuitive results. Representation can help highlight different dataset characteristics and

speed up the distance measure calculation, moving series to low-dimensional spaces while

maintaining a similarity between them [4]. We chose to focus on shape-based approaches

(rather than feature-based) that keep the overall shape of the series for an easier re-

sults evaluation. The three representations we implemented are the Piecewise Aggre-

gate Approximation (PAA) [6], the Symbolic Aggregate approXimation (SAX) [7] and the

Extended SAX (ESAX) [8].

Then, a measure of similarity between series has to be defined. Other than the simple

L2 norm, which can be surprisingly competitive [1], on SAX and ESAX series we employed

the symbolic distance MINDIST, which is proposed in the same seminal paper as the SAX,

while on numeric series we also implemented the Dynamic Time Warping [10, 12], a type

of elastic distance.
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Time series dataset
Clusters

Time-series clustering

Figure 30.1: On the left is an extract from the time series dataset used in our work; the

vehicular flux data is collected at one-minute intervals, forming series of 1440 points in

time. On the right, clusters are created based on the similarity in shape of the series.

As for clustering methods, time-series clustering is usually performed using either par-

titioning or hierarchical methods [1]. From the former group, we tried both k-means [9]

and the fuzzy c-means [2], and from the latter, an agglomerative hierarchical approach [5].

While several combinations between representation, similarity measure, and cluster-

ing methods are possible, only the most promising were carried out based on the liter-

ature and initial results. Since the approach is unsupervised, we also implemented clus-

tering evaluation methods to extract the most significant number of clusters for each ap-

proach; namely, the Silhouette index [11] for partitions and the Partition Coefficient And

Exponential Separation (PCAES) index [13] for fuzzy clustering. For hierarchical cluster-

ing, the number was selected via a heuristic based on the growth of significant clusters.

In our conclusion, all clustering results were presented, showing the shapes of the

clusters if a satisfying result was obtained, and the reasoning behind any exclusion if the

method has been proven not suitable for the type of data.

The same results were also employed to perform anomaly detection based on the sim-

ilarity between individual time series and cluster centroids. As part of the collaboration

with Autostrade Alto Adriatico, we developed a closed-source online procedure to gen-

erate daily reports that showcase the most anomalous data from the previous day using

their distance from the closest centroid as an anomaly score.
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References
[1] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Wah. “Time-series clustering - A decade

review”. In: Information Systems 53 (May 2015). DOI: 10.1016/j.is.2015.04.007.

[2] J. Bezdek. “Cluster Validity with Fuzzy Sets”. In: Journal of Cybernetics Volume 3

(July 1973). DOI: 10.1080/01969727308546047.

107

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1080/01969727308546047


[3] M. Briani, E. Cristiani, and E. Onofri. “Inverting the fundamental diagram and fore-

casting boundary conditions: How machine learning can improve macroscopic mod-

els for traffic flow”. ARXIV: 2303.12740. 2023.

[4] P. Esling and C. Agon. “Time-series data mining”. In: ACM Computing Surveys (CSUR)

45.1 (2012), pp. 1–34.

[5] J. Han, J. Pei, and H. Tong. “Data mining: concepts and techniques”. In: Morgan

Kaufmann, 2022, pp. 383–416.

[6] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. “Dimensionality reduction

for fast similarity search in large time series databases”. In: Knowledge and infor-

mation Systems 3 (2001), pp. 263–286.

[7] J. Lin, E. Keogh, L. Wei, and S. Lonardi. “Experiencing SAX: a novel symbolic repre-

sentation of time series”. In: Data Mining and knowledge discovery 15 (2007), pp. 107–

144.

[8] B. Lkhagva, Y. Suzuki, and K. Kawagoe. “Extended SAX: extension of symbolic ag-

gregate approximation for financial time series data representation”. In: Proceed-

ing of IEICE the 17th Data Engineering Workshop (Jan. 2006).

[9] J. MacQueen et al. “Some methods for classification and analysis of multivariate

observations”. In: Proceedings of the fifth Berkeley symposium on mathematical statis-

tics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

[10] F. Petitjean, A. Ketterlin, and P. Gançarski. “A global averaging method for dynamic

time warping, with applications to clustering”. In: Pattern recognition 44.3 (2011),

pp. 678–693.

[11] P. J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis”. In: Journal of computational and applied mathematics 20 (1987),

pp. 53–65.

[12] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for spoken

word recognition”. In: IEEE transactions on acoustics, speech, and signal processing

26.1 (1978), pp. 43–49.

[13] K.-L. Wu and M.-S. Yang. “A cluster validity index for fuzzy clustering”. In: Pattern

Recognition Letters 26.9 (2005), pp. 1275–1291.

108

https://arxiv.org/abs/2303.12740


Learning Slow Invariant Manifolds with Physics-Informed Neural Networks

Dimitrios G. Patsatzis

Modelling Engineering Risk and Complexity, Scuola Superiore Meridionale, Naples, Italy

KEYWORDS: Slow invariant manifolds · Fast-Slow Dynamical Systems · Numerical Methods

· Physics-informed Neural Networks

MSC2020: 70K70 · 65P99 · 68T20 · 34E15 · 34E13

The dynamics of complex systems often deploy on multiple scales in time and space.

To enable their understanding and systematic numerical analysis, it is therefore useful

to introduce simplification processes, generally performed with Reduced Order Models

(ROMs), which reduce the computational complexity of mathematical models in numer-

ical simulation. The construction of ROMs is based on the assumption that the effective

dynamics evolves on low-dimensional spaces, the manifolds. In the case of systems of

ODEs with multiple timescales, these spaces are referred to as Slow Invariant Manifolds

(SIMs) due to the slow timescales that govern the long-term evolution of the system

when attracted towards them [3]. The introduction of SIMs has been crucial for con-

structing ROMs free of fast time scales and for providing useful insights regarding the

physical understanding of the system [4, 7].

The approximation of SIMs fits into in the context of Geometric Singular Perturbation

Theory (GSPT) [3], originally developed to tackle stiff dynamical systems with an explic-

itly known separation between fast/slow timescales. In the case under consideration,

we consider the more general class of stiff dynamical systems, in which the fast/slow

timescale decomposition exists, but is not explicitly known as well as the decomposi-

tion of fast/slow variables and their number. For this class of systems, there is a variety

of methods for constructing SIM approximations, either analytical or numerical, in the

context of GSPT [8, 10]. The advantage gained by these methods lies in the fact that

they discover the SIM as a function of the state variables themselves, which is crucial for

revealing the physical processes that lead the dynamical system to the emergent SIM.

However, this often results in SIM approximations (analytical or numerical) of implicit

form [5, 7], introducing a significant computational cost when SIM expressions are used

for high-dimensional environmental space reconstruction (e.g., after the time integration

of the ROM).

Within the framework of data-driven methods, a plethora of Machine Learning (ML)

methodologies have been developed for constructing black or gray-box ROM surrogates

of complex systems, bypassing the explicit computation of SIMs. These procedures usu-

ally involve first detecting the low-dimensional space with manifold learning algorithms

[1, 11] and then using, for example, Artificial Neural Networks (ANNs) [2, 9] to construct

the ROM. An alternative for performing systems-level tasks is provided by the Equation-

Free framework [6], recently coupled with manifold learning techniques [13], which how-

ever overcomes the explicit computation of the underlying SIMs.
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To combine the advantages of ML techniques and avoid the drawbacks of GSPT meth-

ods, we presented a physics-informed ML approach based on the GSPT framework for the

analytical SIM derivation of singularly perturbed systems in an explicit closed form [12].

In particular, we used single-layer ANNs and random projection ANNs via symbolic differ-

entiation to solve the invariance equation (IE) PDE, that constraints the system dynamics

to lie on the SIM. We demonstrated that the proposed physics-informed ML approach

outperforms other classical GSPT-based methods, especially for relatively large values of

the perturbation parameter.

Here, we take a step forward by relaxing the assumption of explicit timescale split-

ting. We introduce a physics-informed neural network (PINN) approach [14] for learn-

ing explicit functionals of SIMs for the most general class of stiff dynamical systems, for

which the fast/slow timescale splitting and the dimension of the SIM are not explicitly

known a-priori. Furthermore, unlike the other ML methods proposed so far which cre-

ate surrogate models via regression, our approach offers a functional expression of the

SIM. Since the fast and slow variables are not known a priori, this is achieved by the pro-

posed PINN approach by simultaneously (i) finding the transformations that decompose

the state variables into fast and slow components, and (ii) solving the IE for computing

the SIM functional in an explicit closed form.

The performance of the proposed PINN scheme is assessed via three benchmark prob-

lems, namely, the Michaelis-Menten (MM), the Target Mediated Drug Disposition (TMDD),

and a fully competitive substrate-inhibitor (fCSI) mechanisms. For a straightforward com-

parison with the GPST methods, we also derived analytic or numeric SIM approximations

provided on the basis of well-known GPST mehtods, such as the Quasi Steady-State Ap-

proximation, the Computational Singular Perturbation (CSP) method, etc.

We demonstrate that the proposed PINN scheme provides SIM approximations of

equivalent or even higher accuracy than those computed by GSPT methods, especially

close to the boundaries of the underlying SIMs. Finally, we note that for the TMDD and

fCSI problems, the CSP method (which is the most accurate among the GSPT-based ones)

does not provide the SIM approximations in an explicit closed form. In these cases, the

computational time required for training the proposed PINN is comparable to the one

required by CSP to numerically approximate the SIM with Newton-iterations.
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In this work, we propose a novel method for pricing European options numerically in

an efficient manner using the Gauss-Laguerre quadrature. The approach is initially tested

on the Black-Scholes model to confirm its efficiency and then applied to a compound

CARMA(p, q)-Hawkes model, which is our subject of interest and provides a rationale for

introducing the new methodology.

A self-exciting point process featuring a continuous-time autoregressive moving aver-

age (CARMA) intensity process has recently been introduced in the literature. This model,

named CARMA(p, q)-Hawkes [5], extends the traditional Hawkes process [3, 4] by inte-

grating a CARMA(p, q) intensity in place of an Ornstein-Uhlenbeck. The proposed model

maintains the same level of mathematical tractability as the Hawkes process with expo-

nential kernel (e.g., infinitesimal generator, high-order moments, autocorrelation func-

tion, and joint characteristic function), but it shows enhanced capability in reproducing

complex time-dependent structures evident in several market data.

Based on this framework, we propose the aforementioned compound CARMA(p, q)-
Hawkes model incorporating a random jump size independent of both the counting and

intensity processes. Subsequently, we proceed to price European options using the char-

acteristic function. Instead of employing the Carr-Madan formula [1], which requires an

appropriate choice for the damping factor, or the COS method of Fang and Oosterlee [2]

in which three approximation errors are introduced (e.g. truncation of the integration

range in the risk-neutral valuation formula) as discussed in [6, Chapter 6.2.3], the pric-

ing of European options using the characteristic function is based on the Gauss-Laguerre

quadrature. Our approach does not necessitate the truncation of the integration range in

the risk-neutral valuation formula and the approximation error term is controlled by the

order of the Laguerre polynomials. The computation of European option prices based on

the Gauss-Laguerre quadrature appears to be a stable and less time-consuming approach,

particularly within the context of calibration exercises.

In addition, a comparison between the novel approach based on the Gauss-Laguerre

quadrature and the COS method is performed.
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Introduction
We focus on modeling and analyzing the stability of vehicular multilane traffic flow us-

ing the microscopic and macroscopic scales. Traffic flow analysis is essential for under-

standing and improving transportation systems, as congestion and efficiency remain ma-

jor concerns. By studying lane changing (LC) dynamics and developing multilane mod-

els, this work aims to provide a comprehensive approach that connects individual ve-

hicle behaviours at the microscopic level with traffic flow patterns at the macroscopic

level, thereby offering valuable insights for enhancing overall traffic management and

road safety.

Hybrid microscopic models with lane changing
The microscopic approach is based on the dynamics of individual vehicles, considering the

behaviour of each driver. Consequently, such models consist of systems of ODEs, where

the variables represent properties like the position xn and velocity vn of single vehicles.

Here, we extend some one-lane microscopic models to multilane roads. In particular, we

obtain systems where both continuous (dynamical evolution of the vehicles) and discrete

dynamics terms (lane change events) are present, leading to hybrid models [5].

Consider a road with J lanes and a fixed number of vehicles N . Let Ij(t) denote the

set of vehicles in lane j at time t. For a vehicle with indexn, we name the adjacent vehicles

as shown in Fig. 33.1. We present the multilane version of the “Bando–FtL” model [2, 3,

6, 10], a one-lane microscopic model that combines an optimal velocity term involving

an optimal (desired) velocity function Vj(·) dependent only on the headway between

vehicles, and a classical Follow-the-Leader (FtL) term. The multilane model [8] consists

Figure 33.1: Schematic representa-

tion of a multi-lane road. Here, the

reference vehicle is n, travelling in

lane j. Whereas, pkn and skn represent

the vehicles just behind and in front

of vehicle n in lane k = j − 1, j, j +1,

respectively.

lane j − 1

lane j

lane j + 1 pj+1
n sj+1

n

pjn n sjn

pj−1
n sj−1

n
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of the following system, for n ∈ Ij and j = 1, . . . , J .

ẋn = vn

v̇n = α(Vj(∆x
j
n)− vn) + β

∆vjn

(∆xjn)γ+1

LC conditions:
α(Vj(∆x

j′

n )− vn) + β
∆vj

′

n

(∆xj
′

n )γ+1
> (1 + η)v̇n (incentive criterion)

∆xj
′

n > l + ds and xn − xpj′
n
> l + ds (safety criterion)

where l is the vehicles length, and ∆xhn = xshn − xn, ∆vhn = vshn − vn with h ∈ {j, j ± 1}.
The lane changing rules are based on two criteria. An incentive criterion, that allows a

vehicle to change lanes if it would travel faster in a new lane, and a safety criterion, which

requires the lane change to be safe, ensuring adequate distance ds from the follower and

leader in the new lane to avoid collisions. Experimental studies show that lane changing is

infrequent, and to incorporate this behaviour into our model, we introduce a stochastic

component for such occurrences. We use two stochastic processes to model the lane

change dynamics: one for selecting candidate vehicles and another for determining the

expected times of lane changes. For further details, see [8], where an analysis of the

equilibria of this model is also discussed.

Macroscopic multilane models
Macroscopic models aim to describe traffic flow in terms of aggregate quantities such as

density ρj , flux fj , and average speed vj , using systems of hyperbolic PDEs, particularly

conservation or balance laws. Although these models originate from fluid dynamics, they

can be viewed also as a macroscopic limit of appropriate microscopic traffic models. Fol-

lowing this approach, we derived macroscopic multilane models from the hybrid micro-

scopic models presented in the previous section. The resulting models consist of systems

of balance laws, where the derived source terms, describing lane change dynamics, are

strongly motivated by microscopic dynamics. Unlike other macroscopic multilane models

in the literature, these source terms are not directly modeled at the macroscopic level.

The first model we present is a first-order model [7], constructed as the macroscopic

limit of a first-order microscopic hybrid model with lane changing. The model consists

of the following system of balance laws, obtained as the expected value of a stochastic

density due to lane changes.

∂tρj + ∂x(ρjv(ρj)) = νS j = 1, . . . , J

where the source termS =
∑

j′∈Tj

πj′→j(ρj , ρj′)A(ρj′ , ρj)ρj−πj→j′(ρj′ , ρj)A(ρj , ρj′)ρj′

models the gain and loss of mass due to lane changes. Here, πh→k is the probability of

a lane change from lane h to lane k, A(·, ·) is a density amplification function and ν is a

frequency of LC. This model can also be seen as a multilane extension of the one-lane LWR

model [4, 11]. For a deeper analysis, see [7], where a study of the equilibria is detailed.
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In first-order models, the mean velocity is assumed to be a function of the density.

By relaxing this assumption and treating velocity as an independent variable, we obtain

second-order models. Here, we propose a second-order macroscopic multilane model

derived as the macroscopic limit of the hybrid “Bando–FtL” model with lane changing.

The model [9] consists of a 2× 2 system of balance laws given by{
∂tρj + ∂x(ρjvj) = νS,

∂tyj + ∂x(yjvj) = αρj(V (ρj)− vj) +Q
j = 1, . . . , J

with yj = ρj(vj + P (ρj)), where the source terms describe the mass exchange due to

lane changing (S) and the momentum variation (Q) due to these occurrences:

Q =
∑

j′∈Tj

πj′→j
(
ρGj
(
vj + P (ρGj )

)
− yj

)
+πj→j′

(
ρLj
(
vj + P (ρLj )

)
− yj

)
.Here,P (·)

is called pressure function, and ρGj , ρ
L
j describe the density in the gain (G) and loss (L)

scenarios. This model can be seen as a multilane extension of the one-lane ARZ model [1].

Acknowledgements. The results presented in this talk are derived from the collaboration with G.

Puppo, G. Visconti (Sapienza, Rome) and M. Herty (RWTH, Aachen).
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A large body of literature exists in the field regarding methods of clustering [5, 6]; yet,

since the problem is unsupervised, the research on improvements to existing methods

is still an open point. In particular, the integration of Machine Learning with techniques

from Bayesian statistical learning has been shown to provide significant improvements in

the supervised framework by [4] and [1]. In an unsupervised setting, it has been shown in

the literature that the application of bagging techniques to standard clustering methods

improves results and brings new information of fuzzy clustering type. The proposed ap-

proach stems from the work of [2], where the authors linked bootstrap with clustering in

the definition of the BagClust1 algorithm. The aim is to extend the current state of the art

in clustering, adopting Bayesian Bootstrap techniques in unsupervised learning resorting

to a prior knowledge integration scheme.

Bootstrap is a statistical resampling technique used to estimate the distribution of

a statistic, by providing an approximation of the empirical distribution function of data.

Formally, given {X1, . . . , Xn} i.i.d. realization of a random variableX , we are interested

in estimating the distribution of a functionalΦ(F,X), depending on the cumulative distri-

bution functionF of the variableX . In order to generate the distribution of the estimator

Φ̂ for the functional, an approximation for the cumulative distribution ofX is needed.

The Bayesian approach to the evaluation of the conditional distribution requires to elicit

a prior distribution for F on the space of distribution functions, with the aim of using the

posterior ofF to estimate the distribution of the functionalΦ given the sample values. In

the work [3], Ferguson defined a prior for the random distribution referred to as Dirichlet

process. Given a proper distribution function F0 interpreted as the prior guess at F , and

a positive real number k interpreted as a confidence parameter in this guess, kF0 is the

parameter of the process denoted as DP(kF0). The conjugacy property holds: given a

random sample from F ∼ DP(kF0), the posterior is again a Dirichlet process, with up-

dated parameter as convex combination of the prior guess F0 and the empirical cdf Fn:

F |X ∼ DP((k+n)Gn), Gn = k
k+nF0 +

n
k+nFn. Posterior estimations of different func-

tionals Φ(F,X) are then easily computable.

The first approach to prior knowledge integration to the process of resampling data was

proposed by Muliere and Secchi in [7]. B iterations are performed to obtainB bootstrap

samples, with the following procedure:
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1. m new observations x∗1, . . . , x
∗
m are generated from the mixture:

x∗i ∼ k
k+nF0 +

n
k+nFn.

2. weights wb
1, . . . , w

b
m for each observation are drawn from a Dirichlet distribution:

(wb
1, . . . , w

b
m) ∼ Dir

(
k+n
m , . . . , k+n

m

)
.

We apply the proposed bootstrap method focusing on K-means algorithm, as repre-

sentative of partition-based clustering methods. In the following, memberships uk are

assigned to data points and indicate the degree to which they belong to each cluster:

uk ∈ [0, 1],
∑K

k=1 uk = 1, not by an optimization procedure, instead being the result of

the aggregation of labels obtained applying clustering on the bootstrap replicas.

The first proposal is the Bayesian Bagged Clustering algorithm, aimed at bettering the

chosen partitioning algorithm in stability as well as gaining additional information about

the uncertainty in the assignments for the dataset: the procedure is as follows. In the

initial step, we apply the partitioningP with a chosen number of clustersK on data. This

information is used to define a suitable baseline prior for the generating process underly-

ing bootstrap resampling. F0 is imposed as the cumulative of a suitable Gaussian mixture

probability density fθ =
∑K

j=1 pjfµj ,Σj , where θ = (pj ,µj ,Σj), j = 1, . . . ,K are the

mixture parameters, and fµj ,Σj ∼ N (µj,Σj) is the multivariate Gaussian distribution

with mean µj and covariance matrix Σj .

The mixture parameters associated to each component j are the weights pj ,

0 ≤ pj ≤ 1,
∑K

j=1 pj = 1, evaluated as the proportion of data assigned to cluster j in

the dataset initial cluster labeling. The mean µj , representing the cluster centroid, taken

as centroid j from the partitioning P . The variance matrix Σj , defined as the empirical

covariance matrix of the data points in cluster j, Σ∗
j , multiplied for a constant value s

as to consider different concentrations. The second step of the procedure is based on

proper Bayesian bootstrap: m = n observations are generated from the convex combi-

nation of the defined prior and empirical cdf: Gn = (k + n)−1(kF0 + nFn), where k is

the assigned confidence parameter. The proper Bayesian bootstrap resamples present

newly sampled values as well as original dataset values, which are the focus of the clus-

ter labels assignment. K-means is applied to the B resampled learning sets, obtaining a

cluster partitioning for each. Each of the original data points will be assigned to a given

cluster a certain total number of times: cluster memberships are evaluated as the frac-

tion between this total and the number of times the point has been selected overall.

The procedure finally gives an aggregated value of the cluster label for the original data

points from the memberships, as argmax1≤k≤Kuk(xi).
Directly from the above proposal, a second part of the work focuses on its exploitation by

discussing an optimal choice scheme for the number of clusters K. The K-dimensional

vectors of cluster memberships of data points xi, denoted as u(xi), i = 1, . . . , n, will

depend on the parameters of the proper Bayesian bootstrap, on the chosen clustering

algorithm P and in particular on the number of clustersK. This fact motivates the analy-

sis of their behaviour under clustering algorithmP , with fixed parameters, for varyingK,
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in order to recover the underlying cluster structure of the dataset, as the algorithm is ef-

fectively enforcing aK-cluster structure of data by implementing the prior as prescribed.

The fundamental idea of our proposal is that better choices ofK lead to easily assignable

labels for the dataset, because the algorithm is more able to disambiguate between clus-

ters. To quantify the uncertainty about the membership assignments, we seek to deter-

mine how the weight of the components is distributed over the normalized membership

vector u(xi). To do so, we employ the following two measures:

• S(u(xi)) = −
∑k

i=1 uk(xi) log2 uk(xi), Shannon entropy of the vector, quantifies

how the decision is dispersed between every vector component

• Sl,m(u(xi)) = −( ul

ul+um
log2

ul

ul+um
+ um

ul+um
log2

ul

um+um
), Shannon entropy of

the normalized two component vector (ul, um), quantifies the pairwise indecision

between clusters l,m in labeling the data point.

If the number is optimal, one expects the results of the algorithm to give the most crisp

assignments of data points to the clusters: from an information theory viewpoint, the

smallest mean value of S as function of K corresponds to the best choice of number of

clusters. Moreover, for each K, the arguments l,m of the maximum assumed by the

dataset average of Sl,m indicate which two clusters are most ill defined as separated in-

stead of joint; the corresponding value of the measure quantifies the worst case of pair-

wise indecision stemming from the choice ofK.

Finally, the joint usage of the two parameters leads to a taxonomy of clustering results for

the original dataset based on information theory, aimed at enriching the understanding

about the behaviour for different choices ofK.
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Personalized medicine strategies are gaining momentum nowadays, enabling the in-

troduction of targeted treatments based on individual differences that can lead to greater

therapeutic efficacy by reducing adverse effects. Despite its crucial role, studying the

contribution of the immune system (IS) in this context is difficult because of the intri-

cate interplay between host, pathogen, therapy, and other external stimuli. To address

this problem, a multidisciplinary approach involving in silico models can be of great help.

In this perspective, we will discuss the use of a well-established agent-based model of

the immune response, C-ImmSim [1, 3], to study the relationship between long-lasting

diseases and the combined effects of IS, drug therapies and exogenous factors such as

physical activity and dietary habits.

C-ImmSim simulates the dynamics of various computational entities involved in the

immune response. Cellular entities, such as adipocytes, lymphocytes, antigen-presenting

cells, antigens, antibodies, immune complexes and intercellular signaling molecules are

included in the model. In addition, simple pharmacokinetic (PK) and pharmacodynamic

(PD) models based on experimental data are implemented to simulate the effect drugs

against specific targets. A key element of the model is its stochastic nature: fixed values

of parameters produce realizations of the dynamics that can differ from each other in

the immunological initial state (immune repertoire, basal concentrations of metabolites,

systemic inflammatory cytokines, and blood leukocyte counts), and in the occurrence of

probabilistic events. This allows us to associate each simulation run with a virtual patient,

thus mimicking the evolution of disease within a virtual cohort of individuals by simulating

multiple virtual patients. Over the years, C-ImmSim was used to simulate several diseases.

Here we discuss three main applications.

Metabolic homeostasis, inflammation and diabetes
We developed an integrated, multilevel patient-specific model for the simulation and pre-

diction of metabolic and inflammatory processes in the onset and progress of the type 2

diabetes (T2D), as part of the two projects “Multiscale Immune System SImulator for the

Onset of Type 2 Diabetes integrating genetic, metabolic and nutritional data” (MISSION-

T2D) and “Physics informed machine learning-based prediction and reversion of impaired

fasting glucose management” (PRAESIIDIUM).

To reproduce the metabolic and inflammatory processes that determine the transition
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to T2D pathophenotypes, C-ImmSim has been equipped with a model based on differen-

tial equations to take into account the contribution of physical activity and food intake to

the inflammatory state of an individual [6, 7], and that considers both the glucose regula-

tion due to the balance between glucagon and insulin. The kinetics of oxygen consump-

tion, the dynamics of epinephrine and the production of the cytokine IL-6 as a function of

physical exercise are also included [5, 7] and the model is personalized on the individual

functional capacity and based on age, sex, anthropometric characteristics, and current fit-

ness status. Absorption of glucose, alanine and triglycerides are computed starting from

the ingestion of carbohydrates, proteins, and fats. Periods of excessive caloric intake de-

termine the volume growth of adipocytes that, over a certain volume threshold, secrete

cytokines in a process that can eventually result in a continuous inflammatory state [8].

Mycobacterium tubercolosis infection
We used an in silico approach for the management of tubercolosis due to Mycobacterium

tuberculosis (Mtb) infection, as part of the project “European Accelerator of Tuberculosis

Regime” (ERA4TB).

In order to simulate the Mtb infection occurring in the lung, we model the bacterium

as an agent able to move and interact with macrophages and lymphocytes. These in-

teractions are described by a set of specific rules that allow to reproduce the phenotypes

and associated behaviours of Mtb, such as the small replication rate of non-phagocytosed

bacteria, the switch between fast- and slow-replicating Mtb engulfed by macrophages,

the transition to a latent state invisible to the IS to mimic the presence of granulomas, and

the spread of bacteria following both the burst of infected macrophages and the reacti-

vation of granulomas [4]. As a result, a variety of long term behaviours is explored by the

simulated dynamics, that can be classified into clinical states. We are able, in particular,

to both reproduce the key characteristics of the disease (e.g., bacterial load dynamics) as

well as the epidemiological curves in presence of treatment.

Cancer therapy and hepatoblastoma
Finally, we used C-ImmSim to model and predict standard and experimental therapies for

each child with hepatoblastoma (HB), the most common pediatric liver cancer, as part of

the project “Individualized Paediatric Cure” (iPC).

HB is a liver cancer with high heterogeneity that can be classified into two main sub-

types: C1, characterized by a high percentage of fetal cells and high survival rates, and C2,

with a high percentage of proliferative embryonal cells and corresponding to a significant

reduction in the survival probability [2]. We introduce a population of cancer cells consti-

tuted by 2 subtypes, non-aggressive (NC) and aggressive (AC) cancer cells, that differ in

their duplication time. We use these cell types to discriminate between C1 and C2 cancer

subtypes [9]. Both cell types can interact with the IS. The interaction is very weak in the

absence of treatment and is enhanced by cell death induced by drug therapy. The model

was validated both by reproducing survival curves and clinical percentages and by using

statistical methods such as factor analysis and linear discriminant analysis.
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Galerkin reduced order models (G-ROMs) are advanced computational methods de-

signed to utilize data to significantly lower the dimensionality of full order models (FOMs).

These FOMs are derived from traditional numerical discretizations, such as the finite el-

ement method (FEM). By reducing the dimensionality, G-ROMs have been successfully

employed to decrease computational costs incurred to simulate laminar fluid flows gov-

erned by the Navier-Stokes equations (NSE). However, in scenarios where the number of

ROM degrees of freedom is insufficient to accurately represent the complex dynamics of

the flow, G-ROMs yield inaccurate results. These inaccuracies usually manifest as numer-

ical oscillations, which can severely impact the reliability of the simulations. Various ROM

stabilization techniques have been developed to address and mitigate these inaccuracies.

One prominent method for stabilizing ROMs in fluid flow simulations is the regularized

ROM (Reg-ROM), which employs ROM filters to smooth certain terms in the NSE. There

are two primary types of ROM filters currently in use: the ROM projection filter, which op-

erates exclusively in the ROM space, and the ROM differential filter, which operates in the

physical space. Among the various Reg-ROMs, the Leray ROM (L-ROM) has gained partic-

ular popularity for its effectiveness in stabilizing under-resolved, convection-dominated

flows. The L-ROM is inspired by Jean Leray’s work on the NSE and involves replacing the

nonlinear term in the NSE with a filtered velocity term, which enhances both computa-

tional stability and accuracy.

Despite its advantages, the L-ROM has flaws. One major issue is that the L-ROM can

become over-diffusive, particularly when the ROM filter radius is excessively large, lead-

ing to the introduction of too much dissipation. Another significant drawback is the sen-

sitivity of the L-ROM’s accuracy to small perturbations in the filter radius. These issues

necessitate further refinement and improvement of the model.

To address these limitations, we propose a new type of Reg-ROM, the approximate

deconvolution Leray ROM (ADL-ROM) [2]. This new approach incorporates the technique

of approximate deconvolution, a strategy widely used in image processing and inverse

problems, to enhance the accuracy and reduce the sensitivity of the L-ROM. Specifically,

in the ADL-ROM, the filtered velocity in the L-ROM is replaced with an approximately de-

convoluted velocity in the nonlinear term, thereby improving the model’s performance.

This talk aims to present and analyze this novel Reg-ROM, the ADL-ROM. In the first

part of the talk, we will introduce the well-known L-ROM and elaborate on the develop-

ment and mechanics of our new ADL-ROM. This includes a detailed discussion of how
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the approximate deconvolution technique is applied to the L-ROM framework and the

theoretical foundations that support its use.

The second part of the talk will provide a detailed commentary and comparison of

these Reg-ROMs with each other and with the standard G-ROM. This will include present-

ing numerical results obtained from the ADL-ROM, highlighting its superior performance

in various test cases. We will compare the outcomes of the ADL-ROM with those of the

L-ROM and standard G-ROM, focusing on metrics such as accuracy, stability, and com-

putational efficiency. Additionally, we will conduct a thorough analysis of the associated

errors, examining how the ADL-ROM mitigates issues like over-diffusivity and sensitivity

to filter radius perturbations.

In conclusion, we showcase our ongoing work [1], in which we provide rigorous nu-

merical analysis results, such as stability and convergence, for the ADL-ROM. More im-

portantly, we develop rigorous parameter scalings to ensure that the ROM parameters

can automatically adapt to any changes in the corresponding FOM parameters. This ap-

proach stands in stark contrast to currently available data-driven ROMs, which often re-

quire fine-tuning of model parameters when the computational setting changes. We il-

lustrate these numerical analysis results through the numerical simulation of convection-

dominated flows, showcasing the practical applicability and robustness of our proposed

ADL-ROM. Finally, we discuss future research directions, including potential extensions of

the ADL-ROM framework to other types of fluid dynamics problems and the integration

of additional stabilization techniques to further enhance its performance.
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In recent years, Topological Data Analysis (TDA) has gained significant traction in the

field of data science due to its ability to extract valuable insights from complex datasets.

TDA uses topological methods that are resilient to noise and dimensionality, making it a

robust mathematical framework for data analysis. A well-known technique in TDA is the

Mapper algorithm. Mapper provides a visual representation of data in the form of a graph,

called Mapper graph, enabling easy exploration and interpretation. Unlike conventional

algorithms, such as clustering algorithms or Principal Component Analysis (PCA), Mapper

excels at visualizing data by preserving their connected components, making it very effec-

tive for shape analysis and pattern discovery. The effectiveness of Mapper was initially

demonstrated in the analysis of medical data, as showcased in the pioneering work by

Singh et al. [10]. Since then, Mapper has proven to be a versatile and powerful tool

for data exploration, capable of uncovering hidden patterns even in high-dimensional

datasets.

Data exploration is an interactive process that requires constant fine-tuning and ad-

justments to obtain relevant information. Therefore, the running time performance of

software for Mapper is essential for its widespread adoption. The original description of

Mapper [10] includes what has now become a standard approach, involving the construc-

tion of an open cover made of overlapping hyperrectangles, also known as cubical cover.

Currently, researchers and developers have access to several established open-source li-

braries for Mapper. However, these libraries often implement an inefficient construction

of the cubical cover. This crucial step has been consistently overlooked and neglected, re-

inforcing the misconception that Mapper is inefficient with high-dimensional data. Moti-

vated by these limitations, recent advancements in the field have led to the development

of a wide family of Mapper-type algorithms, each proposing a distinct adaptation of the

original concept. For instance, Ball Mapper [4] and Mapper on Ball Mapper [5] construct

the open cover by creating an ε-net [7], using open balls inRn instead of hyperrectangles.

Additionally, specialized variations like NeuMapper [6], designed specifically for neuro-

science data, adopt a more complex approach. This method, partially inspired by Ball

Mapper, employs an intrinsic metric derived from reciprocal kNN. These adaptations all

shift towards using balls instead of hyperrectangles for constructing open covers, which

improves performance but also introduces some randomness and implicit choices due to

the ε-net construction [7]. While this is often acceptable, there are cases where using a

cubical cover is more convenient, especially given its foundational role in many Mapper-
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related results. For instance, one key benefit of the cubical cover is being able to estimate

optimal parameters [2], minimizing the need for time-consuming manual fine-tuning.

In our work, we present a novel and more efficient approach for computing Mapper-

type algorithms, using ideas from computational geometry. Our method allows to con-

struct open covers more efficiently, preserving the open sets of the cubical cover as de-

fined in the original implementation of Mapper. We obtain the cubical cover by applying

the ε-net construction [7] to a pseudo-metric that we define, and improve the running

time performance by adopting metric trees [1, 3, 12, 14]. By employing the ε-net con-

struction we also derive a theoretical upper bound for the time complexity of building

the open cover. This upper bound improves upon the estimation given in [4], highlight-

ing the explicit dependency on the doubling dimension [8] of the dataset. We present

theoretical insights into our method and validate its effectiveness through experimental

evaluations on well-known datasets, demonstrating significant improvements in running

time compared to existing approaches. These experiments include direct comparisons

with existing libraries, namely Kepler Mapper [13] and giotto-tda [11], against our new li-

brary, tda-mapper [9]. Our library, available on GitHub 1 and Zenodo 2 is, to the best of

our knowledge, the only open-source library implementing our approach.
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In this work, we propose an efficient application of the barycentric walk algorithm and

Sutherland-Hodgman algorithm to address the problems that arise when implementing

semi-Lagrangian schemes on unstructured grids. Additionally, we propose a new semi-

Lagrangian scheme for Fokker-Planck equations.

We consider the linear, constant diffusion, Fokker-Planck equation in R2,

{
∂tm+ div(b(x, t)m)− 1

2σ
2∆m = 0, (x, t) ∈ R2 × [0, T ]

m(x, 0) = m0(x), x ∈ R2
(38.1)

where b : R2 × [0, T ] → R2 is assumed to be Lipschitz, σ > 0 and m0 ∈ P2(R2), the

space of probability measures with second bounded moments. Then, the Fokker-Planck

equation in (38.1) can be interpreted as the equation that describes the evolution of the

law of a diffusion process with drift term given by b, volatility given by σ and initial law

given by m0. This allows us to derive a representation formula for the solution of equa-

tion (38.1), which can then be discretized to obtain a semi-Lagrangian scheme, as in [3, 4].

The scheme proposed in this work has been specifically studied for the implementation

on unstructured Delaunay triangulations [7] and conducts a P0 solution approximation.

The combination of unstructured grid with semi-Lagrangian schemes allows for stable

and high-customizable realistic applications. However, the need to locate the feet of

characteristics and the challenge of dealing with flux-deformed grid elements may cause

a significant drop in efficiency when using unstructured space grids. Additionally, when

working on unstructured grids, since each cell is placed and oriented differently from the

others as well as they present a different surface area, we observed that the numerical

solution can be subject to a rapid loss of smoothness and mass dispersion. Therefore,

we implemented the following strategies to address these issues. The first one consists

in solving the equation in terms of the density of the solution, the second in locating the

feet of the characteristics corresponding to all three vertices of each cell element [1, 6].

This allows us to compute the area of intersection of each grid cell with the flux deformed

element, and therefore compute its contribution to the solution [5]. Then, given a time

approximation step∆t > 0 and a Delaunay triangulation of the domain, the approximate
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solutionmn
i in the i-th cell at time tn = n∆t, is computed as follows{

m0
i = m0(Ii), i = 0, . . . ,M

mn+1
i = 1

4

∑4
k=1

∑N
j=0( |βj(Ĩki )| / |Ii| )mn

j n = 0, . . . , NT ,
(38.2)

where Ii represents the grid cell of index i, Ĩki represents one of the four flux deformed

elements that result from the discretization of the diffusion term using a two-dimensional

random walk, | · | represents the area operator, and βj , j ∈ {0, . . . ,M} represent the P0

finite element basis associated with the triangulation.

Regarding the implementation of the scheme, we use the efficiently initialized version of

the barycentric walk algorithm [2] for dealing with point location problems. Moreover,

we propose an efficient application of the Sutherland-Hodgman algorithm [8] to compute

the intersection βj(Ĩki ) between Ij and Ĩki , in (38.2).

Finally, we present some experimental results.
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The seminal Boltzmann Equation represents the cornerstone to describe the dynam-

ics of a rarefied gas which is not in thermodynamical equilibrium, under the assumption of

a very large number of monoatomic identical particles interacting via microscopic binary

collisions. The necessity of studying more complex systems have lead to models involv-

ing mixtures of gases, whose particles are not identical.

Let us consider a mixture ofM species with f = (f1,. . . ,fM ) being the distribution func-

tion. Given x ∈ Ω ∈ RDx , v ∈ RDv , then the distribution f(t, x, v) evolves according to

the so called multispecies Boltzmann equation [3], which, in absence of external forces,

takes the following form:

∂tfi + v · ∇xfi =
1

ε
Qi(f) =

1

ε

M∑
j=1

Qij(fi, fj), ∀ i = 1, . . . ,M.

The parameter ε > 0 is the Knudsen number and the Qij are the collision operators de-

scribing interactions between species i and species j.
The mass of each species is preserved, whereas only the total momentum and the total

kinetic energy of the gas are conserved. In the limit of small Knudsen number, that is

ε → 0, the frequency of collisions increases to infinity and the solution could be com-

pletely described by its local hydrodynamic fields, formally obtaining the so called multi-

species Euler limit [2].

The main goal of this talk is to describe an asymptotic preserving numerical method which

is able to capture the asymptotic limit of the original system at the discrete level. In this

perspective, we introduce projective integration schemes.

Projective integration combines a few small time steps with an inner timestepping method

with a much larger (projective or outer) time step, obtaining a computational complexity

essentially independent of the stiffness of the problem [4, 6]. We consider the semidis-

crete version of the original system obtained through the phase space discretization of

the form:

∂tfi = −Dx,v(fi) + ε−1Q̂i(f) =: Dε,t
i (f),

where Dx,v(·) and Q̂i(·) represent a suitable discretization of the convective derivative

v · ∇x and the collision operatorQi.
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Introducing δt and ∆t, which represent the inner and the outer time steps respectively,

we can define as fn,k the approximation of the solution f at tn,k = n∆t+kδt. As inner in-

tegrator we choose an explicit time integration scheme (here the forward Euler method),

obtaining

fn,k+1 = fn,k + δtDε(fn,k) k = 0, 1, . . . .

Starting from a computed numerical solution fn at time tn = n∆t, one first takesK + 1
inner steps of size δt using the inner integrator and then approximate the time derivative

of f, computing fn+1 via extrapolation in time as

fn+1 = fn,K+1 + (∆t− (K + 1)δt)
fn,K+1 − fn,K

δt
.

The projective integration method is suited for problems in which the spectrum consists

exactly of two eigenvalue clusters with a spectral gap between them. The main problem

is that many multi-scale problems, like the multispecies Boltzmann equation, have more

relaxation time scales, with spectrum containing more than two eigenvalue clusters.

For this purpose, telescopic projective integration (TPI) methods were introduced in [5]

and then extended in [1, 7] to the kinetic framework. Indeed, the procedure of the pro-

jective method can be recursively repeated on a hierarchy of nested projective levels to

construct a telescopic projective method.

In this work, we propose to use TPI for the multispecies Boltzmann equation. The choice

of integration parameters relies on accurate spectral information which is difficult to es-

tablish. Therefore, the spectrum is approximated numerically and parameters are chosen

to ensure the stability of the method. Finally, the scheme is validated against different

test cases, providing solutions in the hyperbolic scaling with very small Knudsen num-

bers.
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Studying the loss landscape of artificial neural networks is crucial for our understand-

ing of machine learning. For example, [5] demonstrated that the shape of the loss land-

scape of neural networks makes them generalize well even when they converge to a local

minimum of the loss. Morever, [6] showed that saddle-points are much more numerous

than local minima in large neural networks. Identifying and classifying individual criti-

cal points of the loss can help us understand how neural networks learn [17]. However,

despite recent progress by [17], it is still largely an open problem. An interesting way

forward is through dense associative memory (DAM) models based upon the Hopfield

network [9, 11]. In fact, the interpretability of DAMs and their learning dynamics hints

that they may have a relatively simple loss landscape [3].

The Hopfield network was originally introduced as a simple model of biological as-

sociative memory [9]. The DAM are a generalized Hopfield networks [4, 13] that were

developed to improve upon the limited storage capacity of the original model [2, 9].

In recent years, the DAM were made into trainable machine learning models capable

of accurate pattern classification [11, 14]. In a nutshell, the DAM introduced in [11] learns

prototypes of patterns in a trainable weight matrix. Patterns awaiting classification are

then attributed the class of the prototype that resemble them the most. The resulting

classification scheme is considerably more adversarially robust and interpretable than

that of a typical feedforward neural network with ReLU activation functions [10, 11]. Since

then, deep connections were made between modern Hopfield networks and transform-

ers [14] as well as score-based diffusion models [1]. In particular, the modern Hopfield

network used to implement the attention mechanism of transformers [14, 15] has been

attracting a lot of interest in fundamental [8, 12] and applied research [7, 8, 15]. Recently,

it was observed that the trainable weights of DAMs for pattern classification are chan-

neled towards minima by a low-dimensional network of valleys in the loss landscape [3].

Moreover, the critical points where valleys branch out from one another were identified

to be saddles in the simple case where the DAM has two patterns to learn. In general,

the loss landscape of neural networks can be very complicated, so it is difficult to identify

and classify their fixed points [17]. However, the interpretability of DAMs and the results

of [3] suggest that DAM fixed points may be easier to study than that of generic neural

networks. With this goal in mind, we revisit dense associative memory for pattern clas-

sification using the framework of restricted Boltzmann machines (RBM) and statistical

mechanics.
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First of all, we derive a DAM model for classification from three basic assumptions

about the distribution of data to be classified:

1. The data is scale invariant, i.e. any data point x is equivalent to cx.

2. The data can be partitioned in disjoint clusters.

3. The clusters are subsets of mutually exclusive classes y.

Second of all, we show that our DAM learns similar weights and is just as interpretable

as the DAM introduced in [11]. Third of all, we use the replica method of statistical me-

chanics to study the loss landscape of dense associative memory trained on real data. We

show that local minima of DAM models are embedded in larger DAM models, where they

become saddle points. We then relate these findings to the learning dynamics guided by

valleys and saddles studied in [3]. Finally, we implement a network growing algorithm

[16] that leverages saddle points to significantly reduce the cost of training dense asso-

ciative memory.
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Alzheimer’s disease (AD) is the most common form of dementia. It is well-known that

two proteins, namely beta amyloid and misfolded forms of tau protein, have a key role in

neurodegenerative processes. The mechanisms linking the widespread and progressive

deposition of these toxic proteins to the development of the disease are only partially un-

derstood and are subject of active ongoing investigation. In this talk, we will present two

different mathematical approaches to the modeling of toxic proteins’ spreading through-

out the brain in AD by means of reaction-transport equations on a finite graph, whose

vertices represent functionally homogeneous brain regions and whose edges describe

the connections between such regions. In the first model, the spreading of toxic tau and

beta amyloid protein between regions is described using models of “network diffusion”:

given an initial distribution of regional pathology in the brain, the diffusion process is gov-

erned by the concentration gradients and the weights between all region pairs and it is

suitably modeled by means of the graph laplacian matrix.

However, an underexplored aspect of tau spreading is that it is governed not simply by

diffusion but also active transport along axonal microtubules. Spread can therefore take

on a directional bias, resulting in distinct patterns of deposition. A two neurons mathe-

matical model of the axonal transport of toxic tau protein has been recently developed

in [4]. The second model that we will present for tau protein is based on a novel ap-

proach to model tau spreading in Alzheimer’s brain. Indeed, this model, which we call the

Network Transport Model (NTM), combines the dynamics of soluble and insoluble tau in

the gray-matter regions and Torok et al. axonal transport model [4] in the white-matter

tracts, and enables us to simulate the dynamics of soluble and insoluble tau in terms of

the diffusion–advection and aggregation–fragmentation processes at the network level.

More precisely, the full network model involves a transport–reaction PDE on each edge,

which describes the dynamics of soluble and insoluble tau within the white-matter tracts

whereas the tau dynamics in the gray-matter regions is modeled by a system of ordinary

differential equations at the nodes of the graph. A straightforward mass transfer mech-

anism of soluble tau between edges and nodes determines the incoming flux of soluble

tau into the nodes.

However, the full NTM is computationally infeasible to simulate on the full network, thus

we provide and implement a quasi-static approximation to the NTM that maintains the

basic properties of the full NTM and is more tractable numerically. Some of the numerical

challenges related to the implementation of the NTM will be discussed.
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For both NTM and network diffusion–reaction model, some numerical simulations will

be shown and the suitability of each model of delivering insights on specific patterns of

AD progression will be discussed. In particular, for network diffusion–reaction model its

capability to predict some in vivo patterns of tau progression will be shown. As regards

the NTM model, its ability to govern directionally biased flows on the connectome will be

discussed, an aspect that has received almost no theoretical attention so far and that has

been observed in mouse models of tauopathy.

Acknowledgements. The results presented in this talk are derived from the joint works [1, 2, 3] and

the ongoing collaborations with M. Bertsch (U. Roma 2), A. Raj, and J. Torok (UCSF).
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The emergence of physical structures and equilibrium solutions, such as divergence-

free solutions in contexts like shallow water and magneto-hydrodynamics, poses a signif-

icant challenge. A simple linear approximation of such systems that already show these

behavior is the linear acoustic system of equations (in 2 dimensions)
∂tu+ ∂xp = 0,

∂tv + ∂yp = 0,

∂tp+ ∂xu+ ∂yv = 0

(42.1)

We focus on Cartesian grid discretizations of such systems in 2 dimensions and in the

preservation of stationary solutions that arise due to a truly multidimensional balance of

terms, which corresponds to the divergence-free solutions for acoustic systems. Conven-

tional methods, like the continuous Finite Element SUPG that reads
∫
ϕi (∂tu+ ∂xp) + ∆xα∂xϕi(∂tp+ ∂xu+ ∂yv) = 0 ∀i,∫
ϕi (∂tv + ∂yp) + ∆yα∂yϕi(∂tp+ ∂xu+ ∂yv) = 0 ∀i,∫
ϕi (∂tp+ ∂xu+ ∂yv) + ∆xα∂xϕi(∂tu+ ∂xp) + ∆yα∂yϕi(∂tu+ ∂yp) = 0 ∀i,

face limitations in maintaining these structures due to the employed stabilization tech-

niques that do not effectively vanish when the discrete divergence is zero. One might be-

lieve that having a residual formulation, as SUPG, should preserve a discrete divergence-

free solution (∂xu+∂yv = 0, p = c ∈ R). The problem is that we cannot describe discrete

divergence-free solutions that vanish for both the divergence operator
∫
ϕi (∂xu+ ∂yv)

and for the diffusion operator
∫
∇ϕi (∂xu+ ∂yv). Indeed, the kernel of the combination

of the two operator is very complicated and allows for unphysical equilibria, see center

of Figure 42.1.

We propose to use the Global Flux procedure, which has proven to be successful in

preserving 1-dimensional equilibria [2, 3], to define some auxiliary variables U, V in the

same Finite Element space defined as{
U(x, y) :=

∫ y

y0
u(x, s)ds,

V (x, y) :=
∫ x

x0
v(s, y)ds,
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Figure 42.1: Simulation of norm of u at time T = 100 of a vortex with 20× 20 cells and P1

elements (top) and 10× 10 cells with P2 elements (bottom). Comparison of exact (left),

SUPG (center) and SUPG-GF (right)

so that ∂xu + ∂yv = ∂xy(U + V ) and we can use these variables to define a new SUPG

method where the divergence term and the stabilization terms are
∫
ϕi(∂xu+ ∂yv) ≈

∫
ϕi∂x∂y(U + V ),∫

∂xϕi(∂xu+ ∂yv) ≈
∫
∂xϕi∂x∂y(U + V ),∫

∂yϕi(∂xu+ ∂yv) ≈
∫
∂yϕi∂x∂y(U + V ).

This results in a suitable discretization of both the divergence and stabilization operators

[1]. This approach naturally preserves divergence-free solutions, characterized by the dis-

crete steady state solutions of type ∂x∂y(U + V ) = 0, and more intricate equilibria in-

volving various sources. Most of the other spurious kernel elements of the divergence

discrete operator are proven to be dissipated by the stabilization operator.

We use the Deferred Correction time discretization, obtaining explicit arbitrarily high

order methods. Numerous numerical tests validate the accuracy of our proposed scheme

compared to classical approaches. Our method not only (discretely) preserves divergence-

free solutions and their perturbations but it also maintains the original order of accuracy.

We plot the SUPG-GF solutions at the right of Figure 42.1 and they nicely catch the

divergence-free equilibria.
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Motivation. Let P and Q be two separable Hilbert spaces and consider an operator

F : P → Q. Here, q := F (p) ∈ Q can be interpreted as the response of some physical

system depending on a parameter p. Analyzing such a system when p and/or q are uncer-

tain typically requires numerous evaluations of F . This is challenging when evaluation is

costly, such as when F (p) is the solution to a partial differential equation (PDE). There-

fore, constructing operator surrogates that are cheaper to evaluate while maintaining

acceptable approximation error is a focus of current research. Both neural networks [1,

7, 8, 9] and polynomial methods [3, 4, 5] have been successful. Convergence results for

both surrogate types exist [6, 10, 12]. However, for neural networks, they indicate ex-

istence without practical guarantees, whereas polynomial surrogates yield constructive

and deterministic algorithms. This work presents an extensive comparison of the empir-

ical performance of polynomial and network-based surrogates for various applications

driven by PDEs.

Operator SurrogateArchitecture. In typical applications,P and/orQ are infinite-dimen-

sional function spaces. To use approximation methods like interpolation or neural net-

works, the operator’s input and output must be mapped to coefficient representations

in suitable bases and truncated to finite dimensions. Here, we express the parameter

p as a Karhunen-Loève expansion
∑

j∈N ajΦj with Φj ∈ P , aj ∈ R for all j ∈ N, and

construct an encoderE : P → RdE mapping p to its first dE coefficients (aj)
dE
j=1. We ex-

press q = F (p) as a linear combination of principal components
∑

j∈N bjΨj withΨj ∈ Q,

bj ∈ R for all j ∈ N, and construct a decoderD : Q → RdD mapping q to its first dD coef-

ficients (bj)
dD
j=1. We then approximate the coefficient mapD−1 ◦ F ◦E−1 : RdE → RdD

with a polynomial interpolant SIP or a neural network SNN. The final operator surrogate

is F̂ := D ◦S ◦E with S ∈ {SIP, SNN}. For our study, we construct SNN as a feed-forward

network with about 103 parameters and a smooth activation function, training it with the

Adam optimizer. The polynomial approximation SIP is a sparse grid interpolant tailored

to smoothness assumptions on the operator as derived in [6].

Test applications. We test both surrogate types on the parameter-to-solution map of

two PDEs on the unit square [0, 1]2. The first is the parametric second order elliptic PDE

−∇ · (ep(x)∇q(x)) = 0 with parameter p ∈ L∞([0, 1]2). The second describes the defor-

mation of a hyperelastic material under stress in dependence on an anisotropic stiffness

modulus adapted from [2]. For both test problems, we obtain qualitatively similar results,
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discussed and illustrated below.

Results and discussion. We measure the performance εH1(S) of an operator surro-

gate S in terms of a Monte-Carlo approximation of the relative error in the H1-norm,

εH1(S) :=
(∑N

k=1 ‖qk −D ◦ S ◦ E(pk)‖2H1

)
/
(∑N

k=1 ‖qk‖2H1

)
, usingN = 250 parame-

ter-solution pairs (pk, qk)
N
k=1. The convergence of both surrogate types in the hyperelas-

ticity problem is shown in Figure 43.1. We observe that in terms of accuracy per number of

training data, the polynomial surrogate outperforms the neural surrogate. This observa-

tion is qualitatively similar in both of our test problems and across a range of smoothness

scales of the parameter p. The key strength of neural surrogates is their evaluation speed,

which is independent of the number of training samples used, see Figure 43.2. This can be

leveraged to trade accuracy for speed by first approximating the coefficient map with a

low-degree polynomial SIP, and then approximating the difference between the approxi-

mation target and the low-degree interpolant with a neural network,SNN. The coefficient

map is then approximated by the combination SLC := SIP + SNN, see Figure 43.2.

Note that both methods require careful fine-tuning – of hyperparameters such as the

layer architecture, activation functions, and optimizer for networks, and of interpolation

points and ansatz spaces for polynomial interpolation. For neural networks, more sophis-

ticated architectures, which may lead to improved performance, have been studied, e.g.

[9, 11] and references there.
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Figure 43.1: Surrogate accuracy εH1

in the hyperelasticity problem as a

function of the number of training

data n used for the construction of

the surrogate.
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In my presentation, I focused on introducing and investigating various stochastic coun-

terparts of a specific equation, defined in the following general form:

∂u(t, x)

∂t
= Lgu(t, x), (44.1)

where Lg is the elliptic divergence form operator defined by

Lg =
1

r(x)

d

dx

(
R(x)

d

dx

)
,

R and r are two measurable and bounded functions defined on R and satisfying: µ1 ≤
R(x) and µ2 ≤ r(x), ∀x ∈ R; where µ1 and µ2 are two strictly positive real constants.

While these equations have been studied by various authors, an explicit expression for

their fundamental solutions remains elusive. One interesting particular case of PDE (44.1)

is the particular one which the operator, Lg = L, is given as well:

L =
1

2ρ(x)

d

dx

(
ρ(x)A(x)

d

dx

)
; (44.2)

with

A(x) = a11{x≤0} + a21{x>0} and ρ(x) = ρ11{x≤0} + ρ21{x>0},

ai, ρi (i = 1, 2) are strictly positive constants and
df

dx
denotes the derivative of f in the

distributional sense. Equations (44.1) appears in the mathematical modeling of diffusion

phenomena in many fields, for example, in geophysics, ecology, biology and so on. The

non-smoothness of the coefficients in Operator (44.2) reflects the heterogeneity of the

medium in which the process under study propagates. What makes the study of this

equation interesting is that the expression for the fundamental solution has been deter-

mined. It can be explicitly expressed as well:

G(t− s, x, z) =
1{t>s}√
2π(t− s)

(
1{z≤0}√

a1
+

1{z>0}√
a2

)
×

{
exp

(
− (f(x)− f(z))2

2(t− s)

)

+ β sign(z) exp

(
− (|f(x)|+ |f(z)|)2

2(t− s)

)} (44.3)
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where

f(z) =
z
√
a1

1{z≤0} +
z
√
a2

1{z>0}

β =

√
a1 +

√
a2(α− 1)

√
a1 −

√
a2(α− 1)

, α = 1− ρ1a1
ρ2a2

, sign(z) =

{
−1 if z ≤ 0

1 if z > 0

My study was based on applying various Gaussian noises on our model given in (44.1).

So, the problem under studying will be expressed as well:

∂u(t, x)

∂t
= Lu(t, x) + Ẇ (t, x) (44.4)

for every t ∈ (0, T ], x ∈ R, with vanishing initial condition u(0, x) = 0, ∀x ∈ R. Here,

Ẇ denotes the formal derivative of a space-time white noise. More precisely, W is a

centered Gaussian fieldW = {W (t, C); t ∈ [0, T ], C ∈ Bb(Rd)}with covariance

E(W (t, C)W (s,B)) = (t ∧ s)λd(C ∩B),

where λd denotes the Lebesgue measure. So W behaves as a Wiener process both in

time and in space. My main interest is to focus on studying the existence of the mild

solution to the SPDE (44.4), which is a wiener process defined as well:

u(t, x) =

∫ t

0

∫
R
G(t− s, x, y)W (ds, dy), (44.5)

here G is the fundamental solution of the deterministic equation defined in (44.3) and

the integral in (44.5) is a Wiener integral with respect to the Gaussian noiseW .

My focus was on analyzing various properties of the solution such as sharp Hölder reg-

ularity of the sample paths, non-differentiability of the trajectories, or scaling properties.

Every time, I try to compare the behavior exhibited by the solution of SPDE defined in

(44.4) with the classical case, that is the heat equation in homogeneous domain. More-

over, I expand the quartic variations in time and the quadratic variations in space of the

solution to a stochastic partial differential equation with piecewise constant coefficients.

Both expansions allow us to deduce an estimation method of the parameters appearing

in the equation.The outcome of this work was the publication of two articles, [1] [2].
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Simulating computer models is of paramount importance in today’s world. From cli-

mate modelling and weather forecasting to medical imaging and applications, mathe-

matical models have revolutionised what can be achieved with computational budget at

hand. Typically, these are subject to uncertainty arising from unknown model parame-

ters which have to be estimated from (scarce) data, numerical errors arising from nu-

merical approximations, or round-off errors and incomplete knowledge of the system.

Tracing the propagation of the aforementioned uncertainty through the system is crucial,

but it frequently increases the computational complexity of the deterministic algorithms

associated with the original problem. Hence, in this mini-course we discuss an efficient

method for tackling this issue, namely the multilevel Monte Carlo method [3, 4].

One example of interest in practice is simulating groundwater flow. Specifically, wa-

ter resources, generally comprising of ground and surface water, must be preserved free

of pollution. Thus, efficient methods for modelling and forecasting the movement of

impurities through aquifers, which are used as supplies for potable water, are necessary.

Such impurities can contaminate the groundwater flowing beneath earth’s surface in var-

ious ways, such as carbon capture and underground storage, fracking, accidental spills, or

spent nuclear fuel repositories. A mathematical model for simulating groundwater flow

rests on Darcy’s Law [1], where the main parameter is the hydraulic conductivity, that is,

the ease with which a fluid can move through porous media or fractures under a given

pressure gradient. In practice, this can only be measured at a finite, usually small, number

of geographical points due to the difficulty involved in collecting physical measurements.

Figure 45.1: Cross-section of subsurface example using ArcScene. [2]
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However, for numerical simulations, the value of this parameter is usually required at all

the points in the computational domain, which constitutes the main source of uncertainty

for this problem. This is illustrated in Figure 45.1.

Another example which arises in practice is climate modelling. These are usually com-

plex models which are computationally expensive due to not only the spatial discretisa-

tion, but also the long simulation times involved in obtained accurate predictions. As

such, one simplified model for atmospheric convection was developed by Lorenz in 1963

[5]. This is a three dimensional system of time dependent ordinary differential equations

(ODEs) where x is proportional to the rate of convection, y to the temperature difference

between ascending and descending currents, and z to the vertical temperature variation.

Here, one important model parameter is the Rayleigh number which indicates whether

the fluid flow is turbulent or laminar. Similar to the previous example, this parameter is

not known exactly, and it is instead taken to be a random variable.

Returning to the problem of uncertainty quantification, we can classify the existing al-

gorithms for tackling this issue in two main categories: intrusive and non-intrusive meth-

ods. In this mini-course, we focus on the latter and, more specifically, with sampling based

approaches. One such method, which is still widely used in practice, is the Monte Carlo

method [6]. For the problem at hand, this entails generating realisations from the distri-

bution associated with the random parameter and subsequently solving the governing

equation for many such samples to approximate a specific quantity of interest. In prac-

tice, this is straightforward to implement as it is heavily based on the deterministic solver

for the model under consideration. In addition, the Monte Carlo computational complex-

ity is independent of the dimension of the space associated with the random parame-

ter. The disadvantage of this approach is that it has a very slow convergence rate, hence

it quickly becomes computationally intractable, particularly for numerically discretised

models.

A novel approach in addressing this problem consists in adopting Multilevel Monte

Carlo (MLMC) algorithms [3, 4]. Such methods hinge on a multilevel variance reduction

technique for the standard MC method. For the problem at hand, this is achieved by first

expressing the quantity we wish to estimate on a relatively coarse grid. Thereafter, we

successively add to it “correction” terms arising from adjusting the grid. Since most of

the uncertainty can be captured on the coarse grid, fewer samples are thus needed on

the finest grid to obtain truthful approximations. Due to the variance reduction, this con-

tributes to a notable reduction in the computational cost associated with MLMC methods

compared to standard MC approaches.

In this mini-course, we first investigate some examples which motivate the need for

uncertainty quantification in practical applications, such as the ones gives above. We then

revise appropriate methods for sampling from the random parameter of the model un-

der consideration. Then, we review existing methods for tackling the uncertainty quan-

tification problem, with a particular focus on Monte Carlo methods. We finally describe

alternative approaches which outperform the standard Monte Carlo method, specifically

the Multilevel Monte Carlo method. We conclude with an overview of different research

directions which are still of interest in this community.

148



References
[1] G. De Marsily. Quantitative hydrogeology. London: Academic Press, 1986.

[2] M. DeMeritt. Modeling the terrain below. Creating dynamic subsurface perspectives

in ArcScene. Esri Writer. 2012.

[3] M. B. Giles. “Multilevel Monte Carlo Path Simulation”. en. In: Operations Research

56.3 (June 2008), pp. 607–617. ISSN: 0030-364X, 1526-5463. DOI: 10.1287/opre.1
070.0496.

[4] S. Heinrich. “Multilevel monte carlo methods”. In: Large-Scale Scientific Computing:

Third International Conference, LSSC 2001 Sozopol, Bulgaria, June 6–10, 2001 Revised

Papers 3. Springer, 2001, pp. 58–67.

[5] E. N. Lorenz. “Deterministic Nonperiodic Flow.” In: Journal of the Atmospheric Sci-

ences 20.2 (Mar. 1963), pp. 130–148. DOI: 10.1175/1520-0469(1963)020<0130:
DNF>2.0.CO;2.

[6] A. B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.do
mains/mc/, 2013.

149

https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/


Cubic and quadratic polynomial enrichments of the Crouzeix–Raviart finite element

Federico Nudo

University of Padua, Italy

email: federico.nudo@unipd.it

KEYWORDS: Finite element method · Enriched finite element method · Error bound

MSC2020: 41A05

A finite element is defined as a triplet (Kd,FKd
,ΣKd

), where:

• Kd is a polytope in Rd,

• FKd
is a vector space of dimension n composed of real-valued functions defined on

Kd, also referred to as trial functions,

• ΣKd
= {Lj : j = 1, . . . , n} is a set of linearly independent linear functionals from

the vector space FKd
, also known as degrees of freedom, such that FKd

is ΣKd
-

unisolvent. In simpler terms, if f ∈ FKd
and

Lj(f) = 0, j = 1, . . . , n,

then f = 0 [3].

The finite element method stands out as a highly favored approach for numerically solv-

ing partial differential equations, which are commonly encountered in engineering and

mathematical modeling, over domains D ⊂ Rd, where d ≥ 1. Its widespread adop-

tion can be attributed, in part, to its adaptability to different geometries. In this method,

the domain D̄ is partitioned into polytopes, and for each of them, a local approximation

within FKd
is computed to approximate the solution of the partial differential equation.

The global approximation is then defined as a piecewise function composed of the local

approximations.

The finite element can be classified as either conforming or nonconforming, depend-

ing on whether the global approximation exhibits discontinuities at the subdomain bound-

aries. Indeed, standard linear finite elements, which typically use polynomial functions

within the FKd
approximation space, might prove ineffective for solving problems in-

volving singularities. To address this limitation, various strategies have been proposed.

Among these, a notable approach involves augmenting the approximation space FKd

with appropriate enrichment functions.

In particular, given the finite element (Kd,FKd
,ΣKd

), the task at hand is to deter-

mine:

How to select suitable enrichment functions e1, . . . , eN , such that the triplet (Kd, Fenr
Kd
,

Σenr
Kd

) constitutes a new finite element?
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The Crouzeix–Raviart finite element is locally defined as
(
T,P1(T ),Σ

CR
T

)
,where

P1(T ) := span {λ1, λ2, λ3} , ΣCR
T :=

{
ICR
j (f) :=

1

|Γj |

∫
Γj

f (s) ds : j = 1, 2, 3

}
,

with the convention that

v4 := v1, v5 := v2, λ4 := λ1, λ5 := λ2.

Quadratic Polynomial Enrichments: By incorporating quadratic polynomial functions

into the Crouzeix–Raviart element, we achieve a more accurate representation of the so-

lution, particularly in regions with steep gradients or singularities. This enrichment is de-

fined by adding functions from P2(T ), the space of quadratic polynomials, to the original

spaceP1(T ). The resulting finite element is capable of capturing more complex behaviors

of the solution, thus providing improved accuracy in numerical simulations [1,2].

Cubic Polynomial Enrichments: Further enhancement can be achieved by introduc-

ing cubic polynomial functions, resulting in a finite element space that includes functions

from P3(T ). This cubic enrichment allows for even higher fidelity in approximating the

solution, particularly for problems with higher regularity or more intricate solution struc-

tures. The addition of these higher-order polynomials leads to a richer approximation

space, enabling more precise and reliable numerical results [3].

The mathematical formulation of these enriched elements involves defining new sets

of degrees of freedom and constructing the corresponding shape functions. These en-

richments maintain the desirable properties of the Crouzeix–Raviart element, such as its

ability to handle nonconforming approximations while significantly improving the accu-

racy of the solution.

Numerical Experiments: Extensive numerical experiments have been conducted to

validate the effectiveness of these enrichments. The results demonstrate that both qua-

dratic and cubic enrichments lead to substantial improvements in the accuracy of the nu-

merical solution, particularly for problems involving complex geometries or singularities.

These experiments also highlight the practical benefits of using enriched finite elements

in engineering and scientific applications, where high precision is crucial.
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Physics Informed Neural network for Advanced modeling (PINA) [3, 4] is an open-

source Python library1 capable of solving differential equations using artificial intelligence

models. It is built on top of PyTorch with PyTorchLightning [5] as backend and enables

users to define their own problems and create models to easily compute differential equa-

tion solutions using Physics-based Neural Networks and Neural Operators (NOs). The

modular structure of PINA allows it to be tailored to specific user needs, providing the

freedom to choose the most suitable learning techniques for their specific problem do-

main. Additionally, by exploiting the capabilities of the Lightning package, PINA can

adapt to various hardware setups, including GPUs and TPUs. This adaptability makes

PINA an excellent choice for implementing these methodologies in production and in-

dustrial pipelines, where computational efficiency and scalability are crucial.

The pipeline to solve differential equations with PINA follows five main steps (also

depicted in Figure 47.1):

Problem definition is formulated by constructing a class inheriting from one or more

problem classes, depending on the nature of the problem treated. Currently, avail-

able implemented classes are AbstractProblem, SpatialProblem,

TimeDependentProblem, ParametricProblem, and InverseProblem. Here ge-

ometries and conditions (i.e., equations and constraints) are defined.

Data generation which could be observations obtained by numerical solver solutions for

supervised learning (e.g. in NOs) or collocation points sampled inside the domain

where the residual of the differential equation must be evaluated (e.g. in Physics

Informed Neural Networks, or PINNs).

Model choice across many options such as standard multilayer perceptrons (MLPs), skip

connection MLPs [11] (m-MLPs), hard constraint MLPs [7] (hard-MLPs), or Deep Op-

erator Networks [6] (DeepONets) to cite a few.

Solver selection where solvers are Python objects which define the optimization strat-

egy for the model. In PINA, the solver is constructed by inheriting from the abstract

class SolverInterface, which wraps Lightning Modules. Available solvers include

1https://github.com/mathLab/PINA
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Figure 47.1: PINA package workflow. Starting from the problem definition, a specific

model is passed to the solver, which defines, together with the trainer, the optimization

strategy of the model.

physics-informed solvers (PINN [9], SAPINN [8], CausalPINN [10], RBAPINN [1]), su-

pervised learning solvers (SupervisedSolver, ReducedOrderModellingSolver),

particularly crafted for data-driven problems and NO approaches, and an adversar-

ial solver (GAROM [2]).

Training is done using the Trainer class, which wraps the Lightning Trainer class. In

the Trainer class, the user must pass a SolverInterface object in addition to

all the available arguments of the Lightning Trainer. This strategy allows the user

maximal training flexibility by exploiting fully PytorchLightning capabilities, e.g.

low precision training, gradient accumulation, multiple GPU training, and different

hardware training.
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Figure 47.2: Example of visualization API for the Poisson problem in PINA. Left: PINA solu-

tion, center: real solution, right: absolute value difference of real and predicted solution.
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This mini-symposium investigates the interaction of computational approaches, such

as deep learning, artificial intelligence, parallel computing and quantum computing, with

applications in agriculture, epidemiology, and plant pathology. The presentations will fo-

cus on research on: deep learning models for molecular diagnostics of plant pathogens;

AI-driven interpretation of volatile organic molecules for plant communication; stable nu-

merical methods for the efficient solution of models that give rise to Turing patterns; stan-

dard and non-standard numerical methods in epidemic modeling. The symposium will

also discuss the use of quantum computers in agricultural research, as well as the em-

ployment of epidemiological models to forecast the spread of information on social me-

dia. Furthermore, theoretical aspects concerning algorithms used in the context of neural

networks will be addressed. This event allows researchers to showcase their cutting-edge

discoveries and discuss collaboration prospects to improve agricultural and epidemiolog-

ical practices.
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The spread of infectious diseases is commonly known to trigger changes in human

behaviour, which can subsequently affect epidemic outcomes [3]. Our study introduces

an integral epidemic model that links the contagiousness of a disease to the duration of

infection, incorporating the impact of human behaviour on the progression of the disease

[1, 2].

We examine the basic properties of the model solution, investigate the existence and

stability of equilibria, and apply a non-standard discretization technique to numerically

solve the model [4]. This technique, based on finite differences, preserves the key fea-

tures of the original system, such as positivity, boundedness, and stability of equilibria.

Through a comparative analysis with the continuous model, we highlight the efficacy of

our numerical approach, particularly in long-time simulations. Our research underlines

the crucial role of integrating behavioural dynamics into integral epidemic models, offer-

ing new insights into disease transmission and potential strategies for intervention. At

the same time, it emphasizes the importance of having numerical methods that are effi-

cient and qualitatively consistent with the model.
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Early detection of viral diseases is crucial for preventing the spread of pathogens that

can have devastating impacts on agriculture and the environment. In particular, plant

viruses (phytoviruses) represent a significant threat to plant health. Moreover, in mixed

infection they can act synergically exacerbating the overall damage compared to those

caused by single infections [7]. Factors such as climate change and global trade con-

tribute to the spread and increase the incidence of phytoviruses in crop productions.

Thus, there is the need to develop rapid and sensitive diagnostic methods as support for

actions aimed at containing of their spread. The qPCR (quantitative Polymerase Chain

Reaction) and the LAMP (Loop-mediated isothermal AMPlification) diagnostic methods

are the most widely used molecular techniques for pathogen diagnosis because of their

high sensitivity and specificity [6]. In the qPCR, detection of the specific target sequence

of the pathogen in the sample (e.g. symptomatic leaves) takes place through the emis-

sion of fluorescence, using specific probes marked by a fluorophore or by DNA intercal-

ing agents, which release fluorescence signals in real time during the detection [4]. Real

time detection through fluorescence can also occur in the LAMP method, in addition to:

measuring the samples turbidity, caused by the formation of aggregate during the reac-

tion; observing samples color changes using chemical indicators; checking for amplifica-

tion of target sequence by gel electrophoresis; adopting microfluidic chips or biosensors

[2]. However, using these techniques for simultaneous multiplex detection of different

pathogens in the same sample, involves several challenges, such as data interpretation

from signals emitted by different fluorophores (each related to a specific pathogen) and

the increased likelihood of obtaining false positives and false negatives. The COVID-19

pandemic has driven the widespread development and adoption of sensitive molecular

techniques and stimulated the production of numerous scientific studies focused on im-

proving these methods [3]. Several studies have explored the integration of deep learn-

ing models with molecular assays to enhance data interpretation and test accuracy. An

example is the use of the qPCRdeepNet model, developed to analyze fluorescent read-

ings obtained during the qPCR, showing promising results in detecting SARS-CoV-2 with

commercial kits [1]. In this work we propose a similar approach for the molecular multi-

ple detection of pathogens in the same plant sample using the artificial intelligence. In

particular, the work aims to overcome the critical limitation of data interpretation by im-
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plementing an advanced data analysis system based on Convolutional Neural Networks

(CNNs). CNNs are inspired by the structure and function of the human visual system,

particularly to the mechanism through which the human brain processes images [5]. For

this reason, they are especially effective for processing grid-structured data, such as im-

ages resulting from qPCR and LAMP assays, that typically display amplification curves in

which the fluorescence signal emitted during the reaction is correlated with the number

of amplification cycles. The CNNs will be trained using a large number of images, in or-

der to develop models able to interpret results in real time. This approach can improve

the accuracy of pathogen detection and also simplifies data interpretation. The latter as-

pect is especially crucial in the case of LAMP, which was ideally conceived as a simple and

accessible technique even for operators with a minimal level of training.
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Many significant physical phenomena can be effectively modeled by stiff systems of

Advection–Diffusion–Reaction (ADR) equations. More in detail, we are interested in the

numerical integration of two-component systems of ADR equations in the form{
∂tu(t,x) = Kuu(t,x) + gu(u(t,x), v(t,x)),

∂tv(t,x) = Kvv(t,x) + gv(u(t,x), v(t,x))
(51.1)

that lead to the so-called Turing patterns [7]. Here u, v : [0, T ] × Ω ⊂ R × Rd → R
represent the unknowns, Ku,Kv are linear advection–diffusion operators, while gu, gv

are the nonlinear reaction terms. We assume that the spatial domain Ω is the Cartesian

product of one-dimensional intervals, that is Ω = [a1, b1] × · · · × [ad, bd]. The system

is finally completed with appropriate initial conditions and with homogeneous Neumann

boundary conditions. We introduce a spatial grid of size n1 × · · · × nd and apply the

method of lines to model (51.1) to get a system with Kronecker sum structure. Infact,

assume we obtain a system of stiff ordinary differential equations such as{
u′(t) = Kuu(t) + gu(u(t),v(t)),

v′(t) = Kvv(t) + gv(u(t),v(t)),
(51.2)

where Ku and Kv are matrices of size N × N , with N = n1 · · ·nd, that discretize the

linear operatorsKu andKv, respectively. The matricesKu andKv are Kronecker sums.

By definition, a matrixK ∈ CN×N is a Kronecker sum if it can be decomposed as

K = Ad ⊕Ad−1 ⊕ · · · ⊕A1 =

d∑
µ=1

A⊗µ, A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1.

In our context Iµ andAµ, for µ = 1, . . . , d, are matrices of small size nµ × nµ and repre-

sent the identity and a one-dimensional linear differential operator along the direction µ,

respectively. The symbol⊗ denotes the standard Kronecker product between matrices.

Finding efficient numerical integrators for system (51.2) is of paramount importance

to have fast and reliable simulations at disposal. In this context, time marching schemes

of exponential type [5] have received much attention in recent years thanks to their ex-

cellent performance in the stiff regime [1, 2, 3, 4]. In contrast to implicit methods, these
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schemes do not need the solution of (non)linear systems but rather the computation of

the ϕ` functions, i.e., special entire functions linked to the exponential function and de-

fined for a generic matrix X by ϕ`(X) =
∑∞

k=0
Xk

(k+`)! . Here, we present the so-called

directional split exponential methods and show how to compute the relevant matrix ϕ`

functions when the problem has ad-dimensional Kronecker sum structure. The technique

is based on a suitable directional splitting, which allows for an efficient tensor-oriented

evaluation through µ-mode products and Tucker operators (realized in practice by the

high performance level 3 BLAS). In particular, we exploit the approximation

ϕ`(τK)w = `!d−1ϕ`(τA⊗1) · · ·ϕ`(τA⊗d)w +O(τ2), ` > 0, (51.3a)

where τ is the time step size. This approximation can be efficiently computed in tensor

form as

`!d−1ϕ`(τA⊗1) · · ·ϕ`(τA⊗d)w = `!d−1vec

(
W

d×
µ=1

ϕ`(τAµ)

)
(51.3b)

thanks to the equivalence

(Ld ⊗ Ld−1 ⊗ · · · ⊗ L1)v = vec (V ×1 L1 ×2 · · · ×d Ld) = vec

(
V

d×
µ=1

Lµ

)
.

Here, V is an order-d tensor of size n1 × · · · × nd such that v = vec(V ), where we de-

noted with vec the operator that stacks by columns the input tensor, and Lµ ∈ Cnµ×nµ

is a generic matrix. Also,×µ denotes the µ-mode product [6], which multiplies the matrix

Lµ onto the µ-fibers (i.e., the generalization to tensors of matrix columns and rows) of

the tensorV . Notice that formula (51.3) gives an approximation of theϕ` functions com-

patible with second order integrators [1, 2], but extensions to higher order approxima-

tions can be constructed similarly. Also, the technique scales very favourably on modern

computer hardware such as Graphic Processing Units (GPUs), since it is heavily based on

level 3 BLAS [3].

The overall approach is shown to be numerically superior compared to state-of-the-

art techniques for the time integration of semidiscretized systems of ADR equations. We

show here in Figures 51.1 and 51.2 the results of ETD2RKds (one of the proposed direc-

tional split exponential integrators) on a 3D advective Schnakenberg model that leads to

a spot-like pattern.

This is a work based on the published manuscripts [1, 2] and preprint [3].
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Figure 51.1: 3D advective Schnakenberg model withN = 803 discretization points.
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ETD2RKds at final times T = 0.8, 8, and 80.
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Plant phenotyping, which studies plants’ morpho-physiological traits to understand

genotype-environment interactions, relies heavily on high-throughput image analysis. This

analysis measures parameters such as biomass, leaf area, root growth, and stress re-

sponse using techniques like visible light imaging, fluorescence imaging, and infrared

thermal imaging. These images, processed with computer vision and machine learning,

enhance accuracy and speed analyses, aiding breeding programs and environmental man-

agement [3]. In this presentation, I will investigate plant-plant communication via volatile

organic compounds (VOCs), which affect genetic regulation, metabolism, and stress re-

sponses in plants through “priming” [2]. The aim is to identify phenotypic markers as-

sociated with VOC-sensing in plants. This presentation will explore the application of

exploratory data analysis and supervised learning techniques in the study of plant phe-

notyping traits with a specific focus on i) genetic diversity (wild type vs mutant tomato

plants); ii) plant-plant interactions (primed vs non-primed plants using volatiles emitted

by other, stressed, plants); iii) plant stress response (using drought stress and compar-

ing droughted plants with controls). The dataset comprises phenotypic characteristics of

both wildtype and mutated tomato plants under water stress. The study underscores the

value of advanced statistical and machine learning techniques in improving the precision

and effectiveness of phenotypic analysis in plant sciences. It highlights the use of both

unsupervised and supervised learning methods to analyze complex biological data: K-

means clustering and PCA facilitate initial data exploration and dimensionality reduction,

while the Naive-Bayes Classifier and Feature Permutation Importance [1] offer deeper in-

sights into feature significance and model performance.
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Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is

a critical process in both physiological and pathological contexts, particularly in cancer

development. Figure 53.1 shows an example of new blood vessel formation. The new

vascular network increase the number of tumour cells from pre-existing one.

Figure 53.1: Dynamic of tumour angiogenesis evolution.

This work presents a comprehensive numerical approach for modelling tumour-induced

angiogenesis, focusing on the complex interactions between endothelial cells, tumour

angiogenic factors, matrix metalloproteinases, and angiogenic inhibitors. We introduce a

system of partial differential equations (PDEs) that captures the spatio-temporal dynam-

ics of angiogenesis. The model is based on the work of [3], but extends it by incorporat-

ing more detailed biological mechanisms and improved numerical methods. The starting

point of our model is represented by the following system of PDEs:
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∂C

∂t
= dC

∂2C

∂x2
+

∂

∂x

(
fI
∂I

∂x

)
− ∂

∂x

(
fF
∂F

∂x

)
− ∂

∂x

(
fT
∂T

∂x

)
+ k1C(1− C)

∂P

∂t
= dP

∂2P

∂x2
− k3PI + k4TC + k5T − k6P

∂I

∂t
= dI

∂2I

∂x2
− k3PI

∂F

∂t
= −k2PF (x, t) ∈ [0, Lf ]× [0, Tf ],

(53.1)

where C, P , I , and F represent the concentrations of endothelial cells, proteases,

inhibitors, and extracellular matrix, respectively. The function related to tumor growing

factor T is defined as: exp(ε−1(Lf − x)2), where ε is a scaling factor. The terms fI , fF ,

and fT model the chemotactic and haptotactic responses of endothelial cells. The system

in (53.1) is subject to no-flux boundary conditions (Neumann). The proposed numerical

approach involves a spatial discretization using the method of lines, transforming the

PDE system into a semi-discrete problem. We then apply a Forward Euler method for

time integration, resulting in the following discrete scheme:

Un+1 = Un + τ [AUn +N(Un)]

where U = [C,P, I, F ]T , A is a block matrix representing linear terms, N(U) encap-

sulates the nonlinear interactions and τ is the time step.

To validate our method, we present a convergence analysis of our numerical scheme.

Moreover, we present a stability study for validating the proposed numerical schema. A

comprehensive analysis helps us to discuss on method’s properties and issues. Future

work will focus on extending the model to higher spatial dimensions, incorporating more

advanced time integration schemes such as implicit-explicit (IMEX) methods [1], and in-

cluding additional biological factors such as oxygen concentration and specific growth

factors like VEGF [2].
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World honey production stands at about 1.831 million tons, trending upward for the

third consecutive year (+5,6% compared to 2021). China, India and Argentina are the top

exporters in the world, Ukraine, Spain and Belgium are the top in Europe. As for italy, the

number of beekeepers producing honey for marketing has grown by 8% between 2019

and 2023 [8].

As in other contexts, honey producers must incur costs. In particular, expenses in-

curred in the purchase of drugs and nutrition products are a major cost item [4]. In par-

ticular, climatic instability and desertification in some areas have forced many beekeepers

to resort to rescue feeding, an extremely expensive operation that exacerbates produc-

tion costs, and is more significant in terms of its weight on total costs as the economic size

of the farm increases [4]. Informamiele’s 2023 Honey Cost Report analyzes honey market

trends in production costs, market prices, and economic factors. Beekeeping’s economic

viability, market demand, and environmental effects on honey production are covered

in this detailed report. By highlighting the honey industry’s challenges and opportuni-

ties, the findings benefit beekeepers, market analysts, and policymakers. This analysis is

crucial for market understanding and strategic decision-making amid changing economic

and environmental conditions [4].

Moreover, in order to survive in a competitive business environment, beekeeping pro-

ducers must direct their resources towards innovative solutions, which can include honey

quality assurance programmes and further product development, as well as creation of

value-added honey products that is translated in good business performance [5]. In ad-

dition, the use of innovative techniques for predicting hive production performance is,

therefore, a solution for predicting variations in honey production in hives. We used both

random forest (RF) and extreme gradient boosting (XGB) algorithms. In particular, the

study shows that rainfall, maximum and average temperature are the variables that most

influence hive performance. [3].

Bee colonies are vital to agriculture and the environment. Beekeeping promotes rural

development and plant reproduction through pollination. The European Commission pri-

oritizes research programs, investments in tangible and intangible assets, and measures

to combat hive invaders and diseases, prevent damage from adverse weather, promote

adapted management practices, preserve and repopulate hives on EU territory, and sup-

port laboratories. The European Commission’s honey sector overview outlines the reg-
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ulatory and market landscape for honey production in the EU. It emphasizes the impor-

tance of quality control measures, such as stringent labeling requirements and origin trac-

ing, to maintain product integrity. The resource also highlights the economic significance

of honey and its role in pollination, which is vital for biodiversity. This information is cru-

cial for researchers and industry stakeholders to understand the regulatory environment

and economic factors impacting honey production in the EU [6].

The intersection of quantum technologies and artificial intelligence provides novel

approaches to studying bee behavior, particularly through the application of quantum

machine learning (QML) and artificial bee colony (ABC) algorithms. Quantum machine

learning (QML) techniques employ quantum algorithms to solve complex problems more

efficiently than traditional methods. These algorithms can analyze large datasets, poten-

tially identifying patterns in bee behavior that traditional systems cannot detect [2]. The

Artificial Bee Colony (ABC) algorithm emulates the foraging behavior of bees in order to

optimize intricate problems. This method is effective in optimizing numerical test func-

tions and its potential for analyzing bee behavior patterns in different scenarios. Incorpo-

rating quantum computing principles into ABC algorithms improves their performance,

making them a valuable tool for studying and utilizing data in bee behavior research

[9]. Machine learning algorithms can predict bee behavior in response to environmen-

tal changes, which helps forecast the impacts of climate change and pesticides on bee

populations [7]. Enhancements such as chaotic maps are incorporated into the ABC algo-

rithm to improve convergence rates and prevent local minima. These modifications use

chaotic number generators to introduce randomness and diversity in the search process,

thus improving the algorithm’s performance in solving global optimization problems [1].

Quantum machine learning (QML) integrates advanced mathematical methods and

computational power to improve bee behavior research. Possible research directions and

challenges are related to Quantum neural networks, Quantum data mining algorithms,

and hybrid approaches. Quantum neural networks, including variational quantum cir-

cuits, can use superposition and entanglement to efficiently process complex datasets to

predict bee behavior. This method can reveal complex bee activity patterns influenced by

environmental changes. To improve scalability and efficiency, the Barren plateaus prob-

lem—where gradients diminish and training is difficult—must be addressed. Quantum

data mining algorithms efficiently search large, complex datasets, optimizing data anal-

ysis tasks. This is essential for detecting subtle bee behavior dataset trends that tradi-

tional algorithms may miss. Quantum optimization methods like Quantum Approximate

Optimization Algorithm (QAOA) can improve beekeeping resource allocation, reducing

costs and improving hive management. Combining quantum and classical machine learn-

ing techniques, known as hybrid approaches, can address limitations in quantum hard-

ware and enable practical, scalable applications. Quantum algorithms select features

and preprocess data, then classical algorithms train models. Hybrid models are useful

when full quantum solutions are impractical. This research shows how quantum tech-

nologies and AI can help us understand bee behavior and ecology. Quantum computing

and overcoming technical obstacles could revolutionize environmental monitoring and

sustainable agriculture.
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Information diffusion on social media is a complex phenomenon to be described and

analyzed. Social media, in fact, are free and easy to use so that anyone can easily spread

any kind of information. If on one hand this characteristic gives the opportunity to any

user to be informed about what is happening in the world at any moment, on the other

hand also some problems linked to the diffusion of fake information have been observed.

For example it was proved, as reported in [5], that even the outcome of social or politi-

cal events such as the American Presidential Elections of 2016 or the Brexit, was deeply

influenced by the spread out of fake information.

So, it’s fundamental not only to find a proper way to describe the phenomenon, but

also a strategy to try to predict its evolution and the moment of its peak. However, trying

to predict the moment of the maximum diffusion of a news can be advantageous not only

to deal with the spread out of a fake news, in order to block it, but also in the case of a real

one. Indeed, knowing in advance the moment of the maximum interest towards a certain

topic or product can be advantageous for companies in order to do proper advertising

campaigns.

Actually, there are several mathematical models to describe information spreading:

among these, there is the use of epidemiological models. These mathematical models

are in general based on a system of ordinary or partial differential equations and are used

to describe the spread out of epidemics. However, a news spread on a social media can

be compared to a virus: as a virus spreads in a population of human beings, likewise in-

formation spreads in a population composed of virtual individuals [2, 3, 4]. Certainly,

these models can be used to obtain a rough description of the evolution of a news spread

through time, but if used alone they’re not sufficient to make predictions.

Therefore, the main aim of this talk will be to show that, in order to obtain the desired

predictions, even an adequate dataset of real data and a proper parameter estimation

strategy (as showed in [1]) are required, as confirmed by numerical experiments.
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Optimization algorithms, such as gradient methods, are powerful tools for numeri-

cally solving optimization problems [5]. However, when the dimension of the problem

increases, a stochastic approach to the optimization problem has been introduced to re-

duce computational costs [3]. For example, when the problem admits a vector field that

can be decomposed inN components, a standard method is given by the stochastic gradi-

ent method, i.e., the computation of the gradient of only a random subset of components

of the full vector field under investigation.

In several real-world situations, the dimension of the problem, i.e., the dimension of

the full state vector, is huge and, hence, computing full gradients may become computa-

tionally impracticable. For this reason, alternative methods have been introduced, such

as stochastic coordinate descent methods [4], that computes the derivatives only along a

random subset of directions of the state variable of the problem.

In this talk, we study the qualitative behaviour of such algorithms by exploiting the

weak backward error analysis techniques [1, 6], i.e., by employing modified equations.

More in particular, the starting point of this analysis is the derivation of the weak mod-

ified equations [6] associated with the stochastic optimization method. We then present

a mean-square stability analysis for such stochastic differential equations, allowing us to

gain more insights into the qualitative convergent character of the aforementioned al-

gorithms towards the unique minimizer of the object function. The theoretical details of

this study have been presented in [2].
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The intricate network of microorganisms within the soil, known as the soil microbiota,

is essential for maintaining healthy ecosystems. These microscopic organisms influence

critical processes such as nutrient cycling, decomposition and plant growth. Understand-

ing and predicting the growth patterns of this diverse community is crucial for sustainable

agriculture and environmental conservation [2].

This study explores the use of physics-informed neural networks (PINNs) [1] for predic-

tive modelling of soil microbiota growth [3]. PINNs integrate the physical laws governing

the system into the neural network architecture, allowing the model to learn from both

the data and the underlying physical principles. This integration increases the generalis-

ability and robustness of the model, allowing accurate predictions even under unknown

conditions.

Our results show that PINNs can accurately predict the growth of different soil micro-

bial communities under different environmental conditions. The structure of PINNs al-

lows generalisation through training with different combinations of coefficients and sce-

narios, unlike classical numerical methods which lack adaptability. This makes PINNs a

valuable tool for soil scientists and agricultural researchers.

This work paves the way for the development of advanced models for soil ecosystem

management. By using PINNs, we can gain deeper insights into the complex interactions

between soil microbes and their environment, ultimately promoting sustainable agricul-

tural practices.
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The interactions between insect parasitoids and their hosts [5] are of particular in-

terest for the use of parasitoids as biological control agents. Moreover, host–parasitoid

interactions allow to investigate the emergence of a variety of interesting nonlinear dy-

namical behaviours. In particular, we are interested in the so-called on-off intermittency

[3, 6, 10], that is an aperiodic switching between static behaviour and chaotic bursts of

oscillation.

Bursting behaviours, due to the environmental variability, can have a remarkable influ-

ence on ecosystems, potentially causing abrupt population breakouts in host-parasitoid

systems [8, 11]. The environmental variability [4] has an important influence on ecolog-

ical systems, since it is able to change community compositions and the coexistence of

species, but it can also modify the degree of competition between individuals.

To explore the role of environmental variability on the host–parasitoid interaction,

we consider independently the effect of grazing-dependent habitat variation on the host

density and the effect of environmental fluctuations on the host growth rate. From the

theoretical point of view, we can consider a dynamical system where the control param-

eter changes either due to stochastic [7, 11] or deterministic drivers [2].

We perform an investigation into the parameters that induce on-off intermittency in

an extended version of the discrete Beddington-Free-Lawton [1] host-parasitoid model.

Firstly, we assume that these parameters have stochastic (random) temporal varia-

tions. Therefore, we introduce random forcing factors that impact independently the

grazing intensity and the growth rate of the host population. These stochastic elements

are essential in influencing the onset of on-off intermittency.

Starting from the existing literature, we introduce the concept of reactivity of a fixed

point within the statistical framework, highlighting its importance as a key prerequisite

for the emergence of on-off intermittency. The analysis provides numerical evidence that

equilibrium reactivity is a necessary condition for on-off intermittency to occur. This ap-

proach reveals a critical aspect of the dynamics that has been overlooked in previous

studies.

Then, we show that a more thorough mathematical analysis of the dynamics underly-

ing the onset of on-off intermittency in host-parasitoid systems can be achieved by con-

sidering environmental variability as a deterministic aperiodic driving process. To this aim,

we allow some of the model parameters to vary in time according to an evolution law that

can exhibit deterministic chaos. Therefore, we choose the logistic map as a deterministic

chaotic driver for the Beddington-Free-Lawton system. This yelds to a 3D discrete non-

linear dynamical system, that allows us to better understand the emergence of on–off in-
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termittent behavior that is related to the occurrence of a blowout bifurcation [9]. On–off

intermittency typically emerges only above the blowout bifurcation threshold. However,

We show that this phenomenon can also occur below the threshold. To explain this, we

introduce the novel concept of long-term reactivity. As for the stochastic framework,

also in the deterministic framework the reactivity is found to be a necessary condition

for the onset of on–off intermittency.
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Evolutionary Partial Differential Equations (PDEs) are crucial for various scientific and

engineering fields, serving as the basis for modeling a wide range of phenomena. How-

ever, due to the complexity of these equations, obtaining analytical solutions is often

impractical, therefore developing efficient numerical techniques for approximating so-

lutions is essential. This requires special attention to designing solvers capable of han-

dling the challenges inherent in evolutionary PDEs, such as dimensionality, stiffness, non-

linearities, and time-varying boundary conditions.

The mini-symposium aims to gather young researchers across different disciplines to

share recent advancements in efficiently solving evolutionary PDEs. Diverse applications

will be considered including uncertainty quantification, optimal control, multi-scale and

multi-physics problems, and real-world applications in fields such as crowd dynamics, traf-

fic flows and epidemiology.
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In recent years, there has been a significant focus on advancing numerical methods

to address challenges in plasma physics [2, 4, 5]. Specifically, there is a growing inter-

est in exploring magnetized plasma for its potential applications in fusion devices like

Tokamaks and Stellarators [10, 12]. Plasma confinement devices rely on intricate mag-

netic fields to contain and stabilize the extremely hot and reactive plasma. Achieving and

maintaining the desired plasma parameters, such as temperature, density, and confine-

ment time, is essential for the success of fusion experiments. The complexity of plasma

behavior, combined with the interplay of magnetic fields, introduces unique challenges

that demand advanced mathematical modeling and computational techniques.

In this context, we consider a simplified scenario, restricting ourselves to a two dimen-

sional setting in phase space. This situation mimics the evolution of a plasma inside a

three dimensional axisymmetric toroidal device. To give a precise definition of our simpli-

fied setting, we first consider a two dimensional horizontal section of a three dimensional

torus, which is obtained from the intersection of the (x−y) plane with the solid. We then

focus on a portion of this section, and we successively approximate it by a rectangle in a

new reference frame to simplify the description of the computational domain, see [1] for

further details. Additionally, we assume the model includes uncertainties. Uncertainty

may be due to various reasons, like lack of knowledge on the microscopic interactions or

incomplete informations at the boundaries. To model the evolution of the plasma density

we rely on the Vlasov-Poisson equation which describes the evolution of charged particles

in an electromagnetic self-consistent or externally applied field. For one single species of

the plasma, these equations read as

∂f(t, x, v, z)

∂t
+ v · ∇xf(t, x, v, z) + (E(t, x, z) + v× B(t, x)) · ∇vf(t, x, v, z) = 0,

−∆xφ(t, x, z) = ρ(t, x, z)− 1, E(t, x, z) = −∇xφ(t, x, z),
(60.1)

with

ρ(t, x, z) =

∫
Rdv

f(t, x, v, z)dv.

In the above formulation, E(t, x, z) represents the electric field, whileB(t, x) is an external

magnetic field, which does not depend on the uncertainty, and that here we assume to

take the form

B(t, x) = (0, 0, B(t, x)).
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We look for a control strategy based on B(t, x) obtained as a solution of an optimality

principle, aiming at minimizing the mass which hits the boundaries and/or the thermal

energy close to the walls, [9, 11]. To achieve this, we propose the following continuous-

level control problem

min
B∈Badm

J (B; f, f0), s.t. (60.1), (60.2)

where

J (B; f, f0) =
∫ T

0

∫
Ωx

(
P [D(f, φ)(t, x, z)] + γ

2
‖B(t, x)‖2

)
dxdt,

with Ωx ∈ Rdx representing the spatial domain, and where γ > 0 is a penalization term,

P[·] is a suitable statistical operator taking into account the presence of the uncertainties,

and D(·) aims at enforcing a specific configuration in the distribution function. The con-

trol obtained by solving (60.2) depends on the position x. However, a pointwise control

is not realistic in this context, so we introduce a spatial discretization grid with Nc cells

Ck ⊂ Ωx, where Ωx is the space domain, such that
⋃Nc

k=1 Ck = Ωx, Ck ∩ C` = ∅ for

all k 6= `, and k, ` ∈ {1, . . . , Nc}. We define a piecewise constant control over these

cells, with values interpolated at the cell centres xc. At the discretized level, we rely

on a semi-implicit particle-in-cell methods. The Particle-In-Cell (PIC) method applied to

the Vlasov equation involves discretizing the plasma into a large number of simulation

particles, which represent the distribution function in phase space [7]. These particles

move according to the characteristic curves of the Vlasov equation, interacting with the

electromagnetic fields calculated on a grid. The method combines the particle represen-

tation of the distribution function with a grid-based solution of the fields, allowing for

efficient and accurate simulation of plasma dynamics. The Particle-In-Cell method, while

highly effective for solving the Vlasov equation, incurs significant computational costs

due to the need to track a vast number of simulation particles, expecially in the pres-

ence of uncertainties, where a clasical Monte Carlo method has a convergerce error pro-

portional to σM−1/2, being σ the variance of the solution and M the number of sam-

ples used. To mitigate the computational challenges posed by high-fidelity simulations,

a multi-fidelity approach is adopted [6]. This approach leverages both high-fidelity and

low-fidelity models to achieve accurate and efficient simulations. The high-fidelity model

provides detailed and precise solutions but is computationally expensive. In contrast, the

low-fidelity model offers approximate solutions with reduced computational cost. In this

study, a feed-forward neural network is employed as the low-fidelity model [8]. The neu-

ral network is trained to predict the moments of the distribution function f . Additionally,

other low-fidelity models, including the one suggested in [3], are considered to evaluate

the effectiveness of this approach. Different numerical experiments validate our results,

showing the controllability of the system in presence of uncertainties, and the capability

of the multi scale control variate method to reduce the computational complexity of the

classical Monte Carlo method.
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In recent years, kinetic models, especially Boltzmann equations, have become power-

ful tools for describing and analyzing collective behaviors in systems of interacting agents

[4, 11]. These models have been applied across various fields, contributing significantly to

disciplines like economics, where they help predict market dynamics [14], bubbles and

crashes [10], and analyze wealth distribution [5, 12]. In biology, kinetic models study pop-

ulation dynamics and disease spread, predicting the effectiveness of interventions like

vaccination [6]. Boltzmann-type equations also examine cooperation and altruism in so-

cial systems, genetic mutations, and information diffusion in social sciences (see, e.g.,

[3, 8]). They are used to understand traffic flow, crowd behavior, and optimize wireless

network communications (as in, for example, [1, 7]). Within this broad application frame-

work, opinion formation—how opinions evolve and spread—is critical for understanding

societal phenomena like political polarization and consensus.

In this joint work with Giacomo Albi and Giacomo Dimarco [2] we introduce a new ki-

netic model starting from the microscopic description of the interaction between agents,

then we scale the model to obtain the evolution of observable quantities, providing a

framework for analyzing social events and designing interventions to promote construc-

tive dialogue and reduce polarization. Our study highlights the role of influential individ-

uals within social networks, particularly on platforms like Twitter (now X).

Each agent in our model has a number of followers c > 0 and an opinion on a certain

topic, v ∈ [−1, 1], where −1 indicates a strongly negative opinion and +1, on the con-

trary, a fully positive one (as modeled, e.g., in [13]). We develop an evolutionary model

for connections among individuals on social media, focusing on Twitter to match real

data with our model’s equilibrium distribution, and we get that the stationary distribu-

tion h∞(c) of connections on the network, according to the model and the data, is given

by

h∞(c) =
1√
2πνc

exp

{
− (lnc− λ)2

2ν

}
, (61.1)

for certain values of the parameters ν and λ. Opinions are continuous variables updated

through social media interactions, which are influenced by the number of followers and

opinion distance. We also incorporate randomness to model external factors like infor-

mation access, and we get that the kinetic equation describing the evolution of the opin-
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ion distribution in presence of social media interactions is given by

∂f

∂t
= −∂ (E [f ](v, c, t)f)

∂v
+
∂(Φ0(c)f)

∂c
+

1

2
σ2 ∂

2(D2(v, c)f)

∂v2
+

1

2
ν2
∂2(c2f)

∂c2
,

where f(v, c, t) is the density of agents that at time t have opinion v and number of con-

tacts c, the non-local operator E [f ] models the interaction between agents, the function

D(v, c) weights the randomness, and the value function Φ0 regulates the formation of

the network and is such that its stationary state is given by (61.1). The model captures

features like consensus and polarization, depending on the choice of interaction kernels.

We performed various simulations to validate our model, both with and without data

incorporation. One of the simulations that includes data has been carried on as follows:

we used the access to the Application Programming Interfaces (API) of Twitter to obtain

the content of a number of tweets on the topic “Donald Trump” (and related hashtags)

some days after the 20th November 2022 (re-admittance of Donald Trump on Twitter).

We then employed VADER ([9]) to analyze the texts of the tweets and we obtained a rat-

ing between −1 and 1 for each text, which we considered to be the agents’ opinion on

the subject. To perform the model calibration we introduce a class of interacting func-

tions, explicitly depending by a set of parameters (more details can be found in [2]), and

we assume that the distribution of connections is at the stationary state (61.1). Then,

we search the optimal value of the parameters that minimizes the `1 distance at the fi-

nal time t = 20 of the marginal distribution of the simulated opinions g(v, t) (obtained

using a Monte Carlo algorithm) and the one reconstructed from the data ĝ(v, t). Figure

61.1 shows the comparison between our results and the data: on the left, we have the

marginal of the opinions at time t = 20 and the data, while on the right we have f(v, c, t)
(represented as log(f(v, c, t)+0.025)) compared with the actual data extracted from the

social network (represented by the orange dots).

Figure 61.1: The marginal distribution of opinions at the final time (left) and the compari-

son between the reconstructed density of opinions and contacts and the real data set.
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Studying the collective motion of interacting agent systems is important for under-

standing the formation of coherent global behaviors with applications to economic, bi-

ological, and social phenomena. Modeling these systems poses a significant mathemat-

ical challenge. Nevertheless, the dynamics of the individuals have been successfully de-

scribed by systems of ODEs from Newton’s laws designing basic interaction rules (such as

alignment, attraction, and repulsion) or by considering an evolutive game with dynamics

driven by the simultaneous cost optimization of N players [6]. In this context, it is cru-

cial to design centralized policies that can optimally enforce a desired state. When the

number of agents is very large, directly performing simulations with the nonlinear sys-

tem is computationally cumbersome (we face the so-called curse of dimensionality). For

this reason, it is common practice to employ the corresponding mean-field optimal con-

trol problem instead [2, 3].

We consider in particular the mean-field optimal control problem defined by

min
u

J (u; ρ0) = min
u

{
1

2

∫ T

0

∫
Ω

(
e(t, x, ρ) + γ|u|2ρ

)
dxdt+

1

2

∫
Ω

c(T, x, ρ(T, x))dx

}
(62.1a)

for a general running cost e(t, x, ρ) and a terminal cost c(T, x, ρ(T, x)). Here, ρ = ρ(t, x)
is a probability density of agents satisfying

∂tρ+∇ · [(P(ρ) + s(t, x, ρ)u) ρ]− σ2

2
∆ρ = 0,

ρ(0, x) = ρ0(x),(
(P(ρ) + s(t, x, ρ)u) ρ− σ2

2
∇ρ

)
· ~n =

{
βρ on ΓF,

0 on ΓZ,

(62.1b)

and defined for each (t, x) ∈ [0, T ] × Ω. The evolution of the density is driven by the

non-local operatorP(ρ)(t, x) =
∫
Ω
p(x, y)(y−x)ρ(t, y)dy and by the control u = u(t, x)

weighted by the selective function s(t, x, ρ). The boundary of Ω is partitioned in ΓF (non-

zero flux, β 6= 0) and ΓZ (zero flux).

To determine a (sub)optimal solution to 62.1, we start by formally deriving the first

order optimality conditions using a Lagrangian approach. This results in the gradient di-

rection γu+s(t, x, ρ)∇ψ for the control variable (ψ is the adjoint function), in the forward
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PDE for the density function 62.1b, and in the backward PDE for the adjoint

− ∂tψ =
σ2

2
∆ψ + (P(ρ) + (s(t, x, ρ) + ρDρs(t, x, ρ))u) · ∇ψ +Q(ρ, ψ) +

1

2
(Dρe(t, x, ρ) + γ|u|2),

ψ(T, x) = ψT (x),

σ2

2
∇ψ · ~n =

{
− βψ on ΓF,

0 on ΓZ.

(62.2)

Here,Q(ρ, ψ)(t, x) =
∫
Ω
p(y, x)(x − y) · ∇ψ(t, y)ρ(t, y)dy and the terminal condition is

ψT (x) =
1
2Dρc(T, x, ρ(T, x)). Then, we suitably combine the approximated solutions of

the relevant equations in the context of a steepest descent approach [2].

For the numerical solution of 62.1b and 62.2 we use the method of lines by performing

a semidiscretization in space using standard finite differences. The resulting stiff system

of ODEs is integrated in time using suitable explicit exponential integrators [5], which are

schemes tailored for these kinds of systems. In fact, these methods solve exactly linear

homogeneous systems of ODEs with constant coefficients, they allow for time steps usu-

ally much larger than those required by classical explicit methods, and do not require the

solution of (non)linear systems as implicit methods do. On the other hand, exponential

integrators require the computation of the action of exponential-like matrix functions,

for which efficient techniques have been developed in the recent years [4]. More in de-

tail, for a generic selective function, the semidiscretized system of ODEs corresponding

to the forward equation 62.1b is written as

ρ′(t) = AFρ(t) + gF(t,ρ(t)), ρ(0) = ρ0,

with AF ≈ σ2

2 ∆ρ(t) and gF(t,ρ(t)) ≈ −∇ · [(P(ρ) + s(t, x, ρ)u) ρ]. The boundary condi-

tions are suitably discretized and directly embedded in AF and g. The exponential inte-

grator that we employ for the time marching is

ρk+1 = e
τAFρk + τϕ1(τAF)gF(tk,ρk),

where we used the notation ρj ≈ ρ(tj), we set (for simplicity) a constant time step

size τ = tk+1 − tk, and we introduced the exponential-like matrix function ϕ1(X) =∫ 1

0
e(1−θ)Xdθ. This scheme is known as exponential Euler. It is a fully explicit method

of first (stiff) order and it is A-stable by construction. Similarly, we semidiscretize the

backward equation 62.2 as

−ψ′(t) = AB(t)ψ(t) + gB(t), ψ(T ) = ψT ,

where we denotedAB(t) ≈ σ2

2 ∆ψ+(P(ρ) + (s(t, x, ρ) + ρDρs(t, x, ρ))u)·∇ψ+Q(ρ, ψ)
and gB(t) ≈ 1

2 (Dρe(t, x, ρ) + γ|u|2). The time evolution is then performed as

ψk = e
τAB(tk+1)ψk+1 + τϕ1(τAB(tk+1))gB(tk+1).

We call this first order explicit method exponential Euler–Magnus scheme.
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We perform extensive numerical experiments that assess the efficiency of the pro-

posed approach1. In particular, we consider different control problems for collective mo-

tion in the context of opinion formation and pedestrian dynamics. For compactness of

presentation, we show in Figure 62.1 just the results on a popular opinion model, i.e., the

Sznajd one [2], and on a pedestrian dynamics model for the fast exit of two groups [3].

A preprint version of the complete manuscript is available [1].

−1 −0.5 0 0.5 1
0

1

2

3

x

ρ
(t
,x

)

ρ0(x) – Initial density

ρ(T, x) – Final density

xd – Target

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

ρ
(t
,x

)

ρ0(x) – Initial density

ρ(T, x) – Final density

Figure 62.1: Density at initial and final times for the opinion formation model (left) and

for the pedestrian dynamics model (right).
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Traffic flow modeling is a crucial component in the design, management, and optimiza-

tion of transportation systems. One of the most powerful mathematical tools used in this

field is partial differential equations (PDEs). PDEs offer a robust framework for describing

the dynamics of traffic flow, capturing essential features such as density, speed, and flux

over time and space. These equations enable researchers to predict and analyze complex

traffic patterns, facilitating the development of effective traffic management strategies

and infrastructure improvements.

However, real-world traffic is inherently uncertain due to various factors such as fluc-

tuating demand, unforeseen incidents, and varied driver behaviors. This uncertainty can

significantly impact the accuracy and reliability of traffic flow models [5]. Therefore, inte-

grating uncertainty into traffic models is essential for developing more realistic and trust-

ful solutions.

Investigating the propagation of uncertainties in traffic flow models is indeed the core

of this talk.

Several approaches to quantify uncertainty are presented in the literature and can

be classified in non-intrusive and intrusive methods. The main idea underlying the former

approach is to solve the model for fixed number of samples using deterministic numerical

algorithms. Typical examples are Monte-Carlo and stochastic collocation methods [1].

On the other side, intrusive approaches are based on the fact that the governing equa-

tions have to be modified to incorporate the probabilistic character of the model param-

eters. The stochastic Galerkin method is one of the most famous in this framework.

In this talk we will present both of the methodologies, highlighting advantages and

limitations of each approach, in order to have a more comprehensive analysis.

The first part will be devoted to the intrusive approach, in particular the stochastic

Galerkin approach, which has been applied to study the impact of the uncertainty at dif-

ferent scales of observation [6]. The uncertainty is introduced in the initial data at a mi-

croscopic, mesoscopic and macroscopic scale, and the resulting stochastic models have

been analyzed. In this context, stochastic processes are represented using piecewise or-

thogonal functions, known as generalized polynomial chaos expansion (gPC), which are

then substituted into the governing equations. A Galerkin projection is applied to obtain

deterministic evolution equations for the coefficients of the series expansions [7].

Many challenges arise here, since some desired properties of the original system are

not necessarily transferred to the intrusive formulation, in particular at the macroscopic
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level we face the loss of hyperbolicity of the system [3]. In order to ensure this property,

the basis functions have to fulfill additional assumptions and a consistent gPC expansion

has to be provided for the Galerkin product. Moreover exploiting the link with the kinetic

model [4], we are able to study the probability of having high risk traffic zones, i.e. area

in which instabilities may occur.

However, in many practical scenarios the uncertainty distribution is either unknown or

irregular, posing challenges for the stochastic Galerkin method, which relies on regular-

ity. Consequently, non-intrusive methods are more appropriate for these situations. De-

spite their suitability, the Monte Carlo method, the common prototype for non-intrusive

approach, suffers from slow convergence. To address this limitation, various strategies

have been developed. In this presentation, we will focus on the multi fidelity control vari-

ate method, described in [2].

This approach exploits the multiscale nature of the problem to reduce variance within

the Monte Carlo simulations. Specifically, we exploit the hierarchical relationship be-

tween scales, where high-fidelity models, such as kinetic models, are computationally

expensive but provide high accuracy, and low-fidelity models, like macroscopic models,

are computationally efficient but less precise.

The key point is that the low fidelity model must be an approximation of the high fi-

delity model. By conducting a limited number of high-fidelity evaluations and numerous

low-fidelity evaluations, we can achieve improved accuracy without increasing computa-

tional costs.

At the end of this talk we will see an application of this methodology to a kinetic traffic

flow model. Through numerical tests, we will illustrate the significant improvement in the

convergence rate achieved by this approach.
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In recent years, there has been an increasing interest in machine learning and data sci-

ence [6, 13] with applications such as human speech recognition, competition in strategic

game systems, intelligent routing in content delivery networks, and autonomous vehicles

operations. The intersection of mathematics and artificial intelligence allows the use of

machine learning tools to tackle difficulties arising in numerical methodologies, such as

high-dimensional parameter optimization, in the modelling of physics-based operators

through experimental data or uncertainty quantification, see e.g. [7].

Here, we are interested in a particular class of learning-based methods, the deep resid-

ual neural networks (ResNets). Given a set of input data x0i , i = 1, . . . ,M , the ResNet

propagates those through the layers κ = 0, . . . , L + 1, to provide a state prediction

xi(L+ 1). This state is compared with given reference data yi. The dynamics depend on

a large set of parameters, called weightsw(κ) and biases b(κ). Their values are obtained

as a solution to an optimization problem and the typically iterative process is called train-

ing. The objective or cost is given by a distance ` between predictions xi(L + 1) and

the reference yi.ResNets have also been formulated for infinitely many layers, leading to

the definition of neural differential equations [1] and to mean-field neural equations [5].

The continuous formulations are subject to theoretical investigations and may reduce the

computational cost of the training, especially in the case whenM is large, see e.g. [3, 8].

In this work, we take a different point of view and model the training process as a

controllability problem. In very particular cases, the Hilbert Uniqueness Method (HUM)

yields the existence of optimal weights. The HUM is a mathematical technique used in

the study of partial differential equations that has been applied in control theory of par-

tial differential equations, see e.g. [2]. Here, we also show the applicability of suitably

formulated training problems for ResNet.

The problem of controllability of continuous neural networks has been discussed for

example in [4, 8, 10]. In [10] the controllability of continuous-time recurrent neural net-

works has been established provided that the activation function is the hyperbolic tan-

gent. This work assumes infinitely many layers L → ∞ but still a finite size samples

M <∞.
More recently [4], the controllability is discussed forL andM tending to infinity, lead-

ing to the mean-field equation. Therein, its controllability using weights that are piece-

wise constant (in time) has been established. For further results, we refer to the recent

review [8]. While the controllability can be established here in the case of linear activa-

tion functions, we are also interested in their numerical for general training tasks. To this
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end, we propose an approach based on kernel learning methods. In particular, we ap-

proximate the ResNets loss function using kernel based estimation. Those methods are

commonly used as powerful machine learning tools, see e.g. [9, 12], and they are sup-

ported by a well-defined theory [11].

Summarizing, this work explores deep residual neural networks (ResNets) and their

connection to time-continuous and mean-field equations. It presents controllability re-

sults for linear ResNets, examining both microscopic and mean-field perspectives. Ad-

ditionally, the paper proposes a numerical approach based on kernel learning methods

and demonstrates this approach through numerical experiments for both microscopic

and mean-field neural networks.
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In this talk, we study an upwind finite volume method to construct approximate nu-

merical solutions to a system of two kinetic equations in one dimension that are coupled

through non-local interaction terms. The system we deal with is{
∂tf + v∂xf = (K ′

11 ∗ ρ+K ′
12 ∗ η)∂vf,

∂tg + v∂xg = (K ′
22 ∗ η +K ′

21 ∗ ρ)∂vg,
(65.1)

where (f, g) is a pair of phase-space densities describing the distribution of the two species

on the domain [0, T ]× R× R. The potentialsK ′
11 andK ′

22 are self-interaction potentials

and model the behaviour between agents of the same species, whereas K ′
12 and K ′

21

are cross-interaction potentials and describe the interplay between individuals of oppo-

site species. Moreover, ρ and η denote the associated macroscopic population densities,

i.e.,

ρ(t, x) =

∫
R
f(t, x, v) dv, and η(t, x) =

∫
R
g(t, x, v) dv.

We equip system (65.1) with a non-negative initial datum (f0, g0) ∈ L1(R× R)2.

Models for collective behaviour have gained popularity in describing emergent phe-

nomena in numerous fields such as social sciences [8], pedestrian flows [1], traffic flow,

[2], and biology, see [3, 5, 7], and references therein. In particular, biological applications

are often devoted to understanding the formation of patterns and self-organisation ob-

served in nature, for instance, in swarms, schools of fish, and flocks of birds, see [6].

The existence theory for system (65.1) is studied in arbitrary dimension in [4].

Derivation of the numerical method
Consider the domain QT := (0, T ) × (−L,L) × R. In order to discretize it, we intro-

duce the following strictly increasing sequences: (tn)n∈{0,...,NT } ⊂ [0, T ] to discretize

the time variable; (xi−1/2)i∈{0,...,Nx} ⊂ (−L,L) such that x−1/2 = −L and xNx−1/2 =
L to discretize the space variable; and (vj+1/2)j∈Z ⊂ R such that vj+1/2 → ±∞ as

j → ±∞ to discretize the velocity variable. We then set ∆t := T/NT , ∆xi = xi+1/2 −
xi−1/2, and ∆vj = vj+1/2 − vj−1/2, and we introduce the cellsCi,j = (xi−1/2, xi+1/2)×
(vj−1/2, vj+1/2), for i ∈ {0, . . . , Nx− 1} and j ∈ Z. We define h := max{∆xi,∆vj} > 0,

and we say the mesh is admissible if there is an α ∈ (0, 1) such that αh ≤ ∆xi,∆vj ≤ h.
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To implement our scheme, we truncate the velocity domain choosing vh > 0, such that

vh →∞ as h→ 0 and restrict v ∈ (−vh, vh).
By integrating the differential equation over the cell (tn, tn+1) × Ci,j , and using an

upwind scheme to approximate the terms with the derivatives w.r.t. x and v and an ex-

plicit Euler approximation on the terms involving the time derivative, we end up with the

scheme

pn+1
i,j =

(
1−∆t

[
|vj |
∆xi

+
|(Υp)

n
i |

∆vj

])
pni,j +∆t

[vj ]
−

∆xi
pni+1,j +∆t

[vj ]
+

∆xi
pni−1,j

+∆t
[(Υp)

n
i ]

+

∆vj
pni,j+1 +∆t

[(Υp)
n
i ]

−

∆vj
pni,j−1,

for p ∈ {f, g}, with Υf = K ′
11 ∗ ρ+K ′

12 ∗ η and Υg = K ′
22 ∗ η +K ′

21 ∗ ρ.

Properties of the numerical method
We assume the CFL condition:

∆t

|Ci,j |
≤ (1− ξ)α
vh + CW

,

where CW := maxi=1,2

∑2
j=1‖K ′

ij‖∞, with ξ ∈ (0, 1). The scheme preserves positivity

and conservation of the mass. Moreover, the solutions to the scheme are bounded inLp

uniformly in time t ∈ (0, T ). Finally we provide an estimate on the tails of (fh, gh), proving

that if 0 ≤ f0 ≤ R and 0 ≤ g0 ≤ R, where R(x, v) := C
1+|vj |λ1+|xi|λ2

, for (x, v) ∈ Ci,j ,

with λ1 > 1, λ2 ≥ 1 and λ2 ≤ λ1, and C > 0, then fh and gh remain bounded.

Convergence of the numerical method and error estimate
The main result concerns the convergence of the numerical scheme. In particular, if 0 ≤
f0 ≤ R and 0 ≤ g0 ≤ R, the CFL is satisfied, Kij ∈ W 2,∞(−L,L), and vhh

1/2 → 0 as

h→ 0. Furthermore, we get

fh(t, x, v)⇀ f(t, x, v), gh(t, x, v)⇀ g(t, x, v),

weakly-∗ inL∞(QT ) as∆t, h→ 0,where (f, g) is a solution to system (65.1), in the weak

sense.

We now state our result concerning the error estimate. Let f0, g0 ∈ C2 be non-

negative such that supp(p0(x, ·)) ⊂ (−vh, vh), for p0 ∈ {f0, g0}. Assume the CFL con-

dition is satisfied and Kij ∈ W 2,∞. Then, we can establish the following convergence

result:
‖f − fh‖2L2 + ‖g − gh‖2L2

≤ C
[
∆t+ h1/2 + ‖f0 − fh(0)‖L2 + ‖g0 − gh(0)‖L2

]
,

for some C > 0 depending on T , L, vh, CW , α, λ1, λ2, ‖f‖L∞ , and ‖g‖L∞ .

Finally, we provide some numerical results.
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Whenever we deal with conservation laws, the study of numerical entropy plays an

important role for several reasons. Firstly, solutions for a system of conservation laws

may lose their regularity in a finite time even if the initial data are smooth, giving rise to

discontinuities. In this case, the existence of strong solution and the uniqueness of weak

solutions are lost. To recover uniqueness, we consider as admissible only the weak solu-

tions that satisfy an entropy inequality. For exact solutions, the inequality holds as equal-

ity unless a shock wave is present in the solution. This inequality derives from physical

observations. In fact, in applications the entropy represents for convention the oppo-

site of the physical entropy and the inequality means that for non-regular solutions the

entropy must decrease (and the physical entropy increases).

We can define the numerical entropy production Sn
j in the j − th cell at time tn as

the residual of the entropy inequality computed on the numerical solutions of the con-

servation law. In [2], it is been proved that for a first-order Runge-Kutta scheme, if the

numerical entropy flux is consistent with the entropy flux, thenSn
j converges to zero with

the same rate of the local truncation error in a region of smoothness and it is bounded by

terms of orderO
( 1

∆t

)
if there is a region with a shock wave. Moreover, Sn

j is essentially

negative definite for scalar conservation laws. For this reason, Sn
j can be considered as

a posteriori error indicator for the finite volume scheme: indeed we obtain information

about the size of the local truncation error and the presence of singularities in the so-

lution. Therefore, an important application of the study of the numerical entropy is in

developing stable high-order adaptive schemes which exploit the numerical entropy pro-

duction to change the grid refinement or the order of the scheme to obtain more accu-

rate predictions in a wide range of fields, such as fluid dynamics, gas dynamics, acoustics,

electromagnetism, and traffic flow (see for example [3, 4]).

This work aims to extend this idea to ADER (Arbitrary Accuracy DERivative Riemann

problem) time-stepping techniques, which are fully discrete schemes that solve the high-

order Riemann problem approximately without semi-discretization nor Runge-Kutta meth-

ods (see [1]), in order to compare the results with the entropy production by the standard

semidiscrete finite volume schemes. We will show that the numerical entropy production

can be defined also in this context and it provides a scalar quantity computable for each

space-time volume which, under grid refinement, decays to zero with the same rate of

convergence of the scheme for smooth solutions, it is bounded on contact discontinuities
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and divergent on shock waves. We will also present numerical evidence showing that it

is essentially negative definite.
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Uncertainty quantification (UQ) is a contemporary research area that deals with iden-

tifying, assessing and reducing uncertainties related to physical models, numerical algo-

rithms, experiments and their predicted outcomes, and quantities of interest. Method-

ical computations of uncertainties and errors in simulations, and careful exploration of

how they propagate through a model and impact its expected outcome, are vital in many

applications for principled risk assessments and decision making.

One of the most common approaches to modelling physical phenomena consists of

partial differential equations (PDEs), which allow for computer simulations through the

use of modern numerical solvers. Such models can be found, for instance, in electrody-

namics [13], fluid dynamics [6], and quantum mechanics [5]. In the latter case, the uncer-

tainty arises from unknown parameters whose estimation from physical or experimental

data is impractical.

The specific UQ path we follow in this work is based on modelling the unknown PDE

coefficients as random parameters, so that their uncertainty can be defined in terms of

statistical quantities such as probability density functions or covariance functions. Fur-

thermore, this uncertainty can be traced through the model to the output by resolving

the statistical estimates of various functionals related to the solution of the PDE model.

These estimates are called quantities of interests and they can take, for example, the

form of expected values or variances.

An effective approach to tackle these problems is the Monte Carlo (MC) method,

which consists of generating several realisations of parameter values and subsequently

solving the governing equation for many of these samples to approximate a specific quan-

tity of interest. The advantages of MC are the ease of implementation, as well as the

fact that the associated computational complexity does not grow with dimension [8].

Of course, these benefits are severely weakened if one considers that one or more PDEs

must be solved for each MC sample, the cost of which is naturally dimension-dependent.

In addition, MC suffers from an extremely slow convergence rate, making this approach

intractable.

An alternative which aims to alleviate these issues is the Multilevel Monte Carlo (MLMC)

method [2, 4]. It involves defining multiple levels of approximation that differ in compu-

tational cost. In the context of solving PDEs with random coefficients, MLMC levels can

be defined by different grid resolutions to solve the governing equation. Thereafter, we

cluster much of the computational effort into cheap estimates on a coarse mesh with low
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accuracy. To increase the quality of the approximation, we compute “correction terms”

on finer levels with progressively higher precision. Since most of the uncertainty can be

captured on the coarsest grid, comparatively fewer samples are required on the subse-

quent finer levels to obtain a sufficiently good estimate of the quantity of interest. This

architecture of levels, which divides the work required to achieve a certain accuracy, leads

to a significant reduction in the overall computational complexity of MLMC compared to

standard MC.

A technique widely used for sampling from a random field is the Karhunen-Loève (KL)

expansion [7]. This technique has been extensively studied both theoretically and numer-

ically for PDEs with log-normal random input with MLMC , e.g. [1], as well as with Quasi-

Monte Carlo methods (QMC) and Multilevel Quasi-Monte Carlo methods (MLQMC), see,

for example, the survey [9] and the references therein. Further alterations of this algo-

rithm to accommodate the difficulties arising from random field models with short corre-

lation lengths have been proposed in [12].

In this work, we focus on the circulant embedding technique for sampling from the

random parameter. This technique offers a discrete representation of a random field on a

given mesh, but it is both exact at these grid points and computationally efficient. This is

in comparison with the KL-expansion, which, once truncated, offers a continuous approx-

imation whose rate of convergence is intrinsically linked to the decay of the eigenvalues

of the covariance kernel, which has a direct impact on the computational cost. The circu-

lant embedding method has been integrated with MLMC and MLMQMC in [3, 10].

The main novelty of this work is the adaptation of the circulant embedding method

to produce smooth approximations on coarse meshes of samples from extremely oscil-

latory random fields, i.e. with small correlation length, high variance and low regularity.

This problem usually arises when considering large computational domains, in which the

correlation length is considerably smaller than the size of the domain. This is of partic-

ular interest in MLMC for PDEs with random coefficients since the computational gains

prompted by MLMC rest on using coarse meshes, which is usually not feasible for the

problem at hand. A similar algorithm has been proposed in [11], albeit for random fields

with large-scale fluctuations which still require a fine grid representation. In particular,

Sawko et al. focus on deriving low-rank approximations of the covariance matrix of the

random field without providing a theoretical analysis of the corresponding error.

Hence, we consider the computational efficiency of MC and MLMC methods applied

to partial differential equations with random coefficients. In particular, we apply them to

groundwater flow modeling, where a commonly used model for the unknown parameter

is a random field. We use the circulant embedding procedure for sampling from the afore-

mentioned coefficient. To improve the computational complexity of the MLMC estima-

tor in the case of highly oscillatory random fields, we devise and implement a smoothing

technique integrated into the circulant embedding method. This allows us to choose the

coarsest mesh at the first level of MLMC regardless of the correlation length of the co-

variance function of the random field, leading to considerable savings in computational

cost. We illustrate our results with numerical experiments, where we observe a saving of

up to factor 5-10 in computational cost for accuracies of practical interest.
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Hierarchical time series are collections of time series formed via aggregation. For ex-

ample, the aggregation of the time series of the regional levels of tourism yields the time

series of the national level of tourism. Forecasts for hierarchical time series should be co-

herent: the sum of the forecasts of the regional tourism levels should match the forecast

for the national tourism level. The most popular technique to enforce coherence is called

reconciliation, which adjusts the base forecasts computed for each time series to satisfy

the summing constraints implied by the hierarchy. Forecast coherence is often required

for aligned decision making; moreover, reconciliation has been shown to improve the

quality of the forecasts. Hierarchical forecasting is a very active and rapidly growing re-

search topic, with several significant applications in different areas, such as energy, retail,

and macroeconomics. This mini-symposium will cover recent advancements in different

aspects of the field.
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Hierarchical time series (HTS) are a structured set of time series that are organized into

multiple levels, reflecting different levels of aggregation. For example, in a business set-

ting, sales data might be collected at various levels, such as individual stores, regions, and

total national sales. These levels form a hierarchy where lower-level series (like individual

store sales) sum up to higher-level series (like regional or national sales).

Accurate modelling of dependencies among these series is crucial in many fields, in-

cluding the reconciliation of hierarchical forecasts. In this process, the h-step ahead base

forecasts ŷh are generated independently for each time series at all levels of the hierar-

chy. Forecast reconciliation then adjusts these forecasts to satisfy the linear constraints

imposed by the hierarchical structure, ensuring consistency across all levels. The recon-

ciled point forecasts ỹh are:

ỹh = SGŷh

where G is a suitable matrix and S represents the hierarchical constraints (Hyndman et

al. [1]). A crucial problem in forecast reconciliation is to optimally determine matrixG.

Wickramasuriya et al.[3] formulated the problem as minimizing the trace (MinT) of

the covariance matrix of the reconciled forecasts error Var[yt+h − ỹh].
The resulting optimal matrixG isG = (S′WS)−1S′W−1, whereW is the covariance

matrix of the errors of the base forecasts. Thus, the accuracy of the reconciled forecasts

substantially depends on the estimation ofW .

Estimating the covariance matrixW is challenging. While the sample covariance ma-

trix of residuals is a common choice, it can be unreliable or singular, especially when

n > T . The most effective approach so far is to adopt the shrinkage estimator of the co-

variance matrix (Schäfer & Strimmer[2]), which computes a weighted average between

the entries of the sample covariance matrix and those of the sample diagonal matrix.

In the experiments by Wickramasuriya et al.[3], the shrinkage estimator consistently

yields better-reconciled forecasts than the sample covariance matrix. However, by shrink-

ing towards a diagonal matrix, this approach assumes no prior information about the de-

pendency structure among the variables. Yet, in reconciliation problems, the hierarchical

structure suggest the presence of some conditional independencies.

To exploit this prior information we introduce a shrinkage method that shrinks the

sample covariance matrix towards both the sample diagonal matrix and a third covari-

ance matrix which encodes the conditional independences suggested on the hierarchical
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structure.

This method could improve the accuracy of covariance estimation, particularly when the

number of time series n is large or where the assumptions of conditional dependen-

cies are well-supported by the data. In cases where these assumptions do not hold, the

method should effectively reduce to the Schäfer & Strimmer[2] estimation.

To construct the third matrix, we analyze realistic dependency patterns within hierar-

chical time series. Our experimental results indicate that the most likely dependencies in

the hierarchy occur among sibling variables when conditioned on their parent, a relation-

ship naturally suggested by the hierarchical structure itself. It is reasonable to assume

that variables aggregating to the same parent share substantial information, resulting in

strong intercorrelations. Consequently, we integrate this hierarchical dependency struc-

ture in the construction of the third matrix used in the shrinkage process. Additionally,

we derive a closed-form solution for the shrinkage coefficients by applying the strategy in

Schäfer & Strimmer[2]. In this way, we aim to provide an efficient algorithm for comput-

ing the shrunk matrix that minimize the mean square error relative to the true covariance

matrix.
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Forecast reconciliation is a statistical technique dealing with multivariate time series fol-

lowing a hierarchical structure, or that more generally adhere to linear constraints [1, 4].

Let bt be the vector of allN time series of interest observed at time t, and let at be a

corresponding vector of na aggregated time series, that is,

at = Abt,

withA the aggregation matrix, defining how the bottom time series bt aggregate accord-

ing to the linear constraints. The full vector of time series at time t is given by

yt =

[
at

bt

]
= Sbt, (70.1)

where S =

[
A
IN

]
denotes the “summation” matrix of dimension n × N , where n =

na +N and IN is theN -dimensional identity matrix.

Let ŷh be the vector of h-step-ahead base forecasts obtained with a generic forecast-

ing model applied to eachn time series separately. The motivation behind forecast recon-

ciliation is that, while time series yt naturally aggregate according to a hierarchical struc-

ture given by A, the forecasts ŷh do not. Optimal forecast reconciliation techniques,

such as the Minimuim Trace (MinT) [5], provide an ex-post adjustment to the forecasts

ŷh and make them coherent with the aggregation structure. More precisely, we define

coherent forecasts as

ỹh = Mŷh,

whereM is an×nmapping matrix, whose role is to make the base forecasts ŷh coherent

with the aggregation (70.1).

Following a recent literature, we note that the aggregation matrix A is not always

known in practice. This is the case of cause of death in mortality forecasting [2] or of stock

prices in the case of financial forecasting [3]. Nevertheless, also when suitable known

hierarchies can be found, it is always possible to define additional hierarchies using unsu-

pervised learning approaches [6]. Following [3], we define the aggregation matrix under

unknown hierarchy assumption as

A =

[
1′

U ′

]
, (70.2)
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with U being a membership matrix of dimension na × G with G the number of clusters

or groups. Each element of U , called ui,g takes value of ui,g = 1 if the ith bottom time

series belongs to the gth cluster and ui,g = 0 otherwise.

In this paper, we consider the case of fuzzy hierarchies in (70.2). With fuzziness, the

elements of the U matrix are no longer binary, and can take values between 0 and 1,

indicating the likelihood of each unit being clustered in the gth cluster. The membership

matrix can be found using fuzzy clustering algorithms. The fuzzyG-means algorithm can

be used to estimate the matrix U . The fuzzy G-means is the iterative solution of the

following minimization problem

min
ui,g,bg

J(U ,B) =

N∑
i=1

G∑
g=1

umi,gd
2(bi, bg),

under the constraint
∑G

g=1 ui,g = 1, where U is the membership degree matrix with

generic element 0 ≤ ui,g ≤ 1 defining the membership degree of the ith unit to the gth

cluster,B the set of cluster prototypes, d2(bi, bg) is the distance between the ith bottom

time series and the g-th cluster prototype and m > 1 is the fuzzifier parameter. We

discuss the properties of fuzzy hierarchical forecasting and some of possible applications.
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Time series can often be naturally disaggregated by various nested and/or crossed

attributes of interest [3]. As an example, sales data can be disaggregated by product

categories, and then by product subcategories, down to the Stock Keeping Unit level.

Alternatively, sales data can be disaggregated by geographic divisions. Following [5], a

hierarchical (grouped) time series is a linearly constrained multiple time series consisting

of a collection of time series that follows one (or more) hierarchical aggregation struc-

tures (i.e. Figure 71.1). Forecast reconciliation is the post-forecasting process intended

to revise a set of incoherent forecasts (also known as base) into coherent forecasts (also

known as reconciled) which satisfy a given set of linear constraints.

Most of the forecast reconciliation results move from the classic reconciliation for-

mula valid for the structural representation [1] of a hierarchical time series:

ỹ = S
(
S′W−1S

)−1
S′W−1ŷ (71.1)

where ŷ is the (n × 1) vector of base forecasts, W is an (n × n) positive definite ma-

trix [6] and S is the (n × nb) summing matrix with elements in {0, 1}, indicating simple

summation relationships between variables. The formula (71.1) essentially maps the base

forecasts into a lower-dimensional space defined by the (nb) bottom-level series of the hi-

erarchy, reconciles them in this space, and then aggregates the reconciled bottom-level

forecasts back to the higher levels using a structural matrix. Unlike the structural ap-

proach, the projection approach [6] doesn’t depend on classifying variables as belonging

to a specific level within a hierarchy. Instead, it utilizes a zero-constrained representa-

tion that expresses the constraints within the data as a system of linear equations. The

projection approach determines reconciled forecasts by finding the closest point in the

“coherent subspace” [5], defined by the constraints, to the initial set of base forecasts.

b1 b2 b3 b4 b5

a2 a3

a1 Level 1

Level 2

Level 3

upper time series

bottom time series

Figure 71.1: A hierarchical structure for a linearly constrained multiple time series.
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Figure 71.2: A general linearly constrained structure: two hierarchies sharing only the

same top-level variableX , with different bottom variables, {A1, A2, B} and {C, D}.

The interchangeability between structural and zero-constrained representations, eas-

ily recovered for a grouped time series, is not always straightforward when a general

linearly constrained multiple time series (i.e. Figure 71.2) is considered. In this case, to

derive a structural-like reconciliation formula, we need to represent the constraints as a

system of linear equations, moving away from the summing matrixS to a matrix that cap-

tures these relationships [2]. Using linear algebra techniques like Reduced Row Echelon

Form or QR decomposition [4], the system is simplified to identify free and constrained

variables. These variables play a role analogous to the bottom and upper variables, re-

spectively, in a grouped setting. A new representation is thus created that resembles tra-

ditional hierarchical reconciliation approaches. The transformation results in a linear com-

bination matrix that adjusts the base forecasts to ensure they satisfy all the constraints,

producing coherent forecasts that maintain the integrity of the underlying linear relation-

ships. This method extends the applicability of forecast reconciliation to a broader range

of scenarios, ensuring consistency across forecasts in complex, real-world structures.
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Item 2534 … Item 3049

Figure 72.1: Example of hierarchical time series, taken from the M5 competition [6].

Hierarchical time series are collections of time series that are formed via aggregation,

and therefore satisfy some summing constraints. For example, the total daily sales of

a store is given by the sum of the daily sales of each individual item; there may also be

other aggregated levels, such as product category or store department (Fig. 72.1). The

hierarchy can be expressed as

ut = Abt,

where ut is the vector of all the aggregated, or upper, time series, and bt is the vector of

all the disaggregated, or bottom, time series. The aggregation matrix A, which is made

of 0 and 1, describes how the bottom series aggregate to the upper series. Hierarchi-

cal forecasts should be coherent: i.e., they should satisfy the hierarchy constraints. This

means that the sum of the forecasts for each individual item should match the forecast

for the store, and analogously for the other aggregation levels.

Hierarchical forecasts are usually generated in two steps. First, incoherent forecasts

are generated independently for each time series (base forecasts). Then, they are ad-

justed to become coherent (reconciliation). Reconciled forecasts, besides being coher-

ent, are generally more accurate than the base forecasts. Most methods [5, 7] only rec-

oncile the point forecasts. Only probabilistic forecasts [4], however, allow the quantifica-

tion of uncertainty of the predictions, which is of crucial importance for decision making.

We thus focus on the probabilistic case, where the base forecast of each time series is in

the form of a predictive distribution, rather than a single point.

We denote by π̂ the joint base forecast distribution for all the n time series of the hier-

archy, computed at some time t for time t+ h (the time index is dropped for simplicity).
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Figure 72.2: 2-dimensional representation of the joint base forecast distribution π̂ and the

coherent subspace S

Moreover, we define the coherent subspace S as the set of points of Rn that satisfy the

hierarchy constraints, i.e.

S :=

{[
u

b

]
s.t. u = Ab

}
.

In Figure (72.2), we show a two-dimensional representation of π̂, which has support over

Rn. The base forecast distribution π̂ in incoherent, since it gives positive probability to

regions of points that do not satisfy the constraints; in other words, its support is not

contained in S. Probabilistic reconciliation yields a coherent joint predictive distribution

for the entire hierarchy, i.e., a distribution supported on S.

Our approach to probabilistic reconciliation is based on conditioning [2, 8, 9, 10]: the

reconciled distribution π̃ is obtained by conditioning the base forecast distribution π̂ on

the hierarchy constraints. From a geometric perspective, reconciliation via conditioning

is equivalent to slicing π̂ over the coherent subspace S. The reconciled distribution π̃ can

be expressed, up to a normalizing constant, as

π̃(u, b) ∝ π̂(Ab, b)1u=Ab. (72.1)

Here, π̂ and π̃ denote either the density or the probability mass function, depending

whether the distributions are continuous or discrete, but the same formula (72.1) holds

in both cases [9]. Moreover, eq. (72.1) has been recently proved to hold also in the mixed

case, where the bottom base forecasts are discrete and the upper are continuous [10].

If the base forecast distribution is a multivariate Gaussian, the reconciled distribution

is Gaussian and can be analytically computed [2, 8]. Interestingly, the reconciled mean

coincides with the optimal reconciled point forecast (minT [7]). In general, however, the

reconciled distribution is not available in parametric form: we thus need to resort to sam-

pling approaches [3, 9, 10].

Reconciliation via conditioning works with any type of base forecasts: continuous, dis-

crete, or even mixed. Several experiments show substantial improvements in the quality

of the reconciled forecasts over the base forecasts. Finally, all of the algorithms are very
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efficient, and require few seconds even for large hierarchies; they are implemented in the

R package bayesRecon [1].

References
[1] D. Azzimonti, N. Rubattu, L. Zambon, and G. Corani. bayesRecon: Probabilistic Rec-

onciliation via Conditioning. R package version 0.2.0. 2023. URL: https://CRAN.R-
project.org/package=bayesRecon.

[2] G. Corani, D. Azzimonti, J. P. Augusto, and M. Zaffalon. “Probabilistic Reconcilia-

tion of Hierarchical Forecast via Bayes’ Rule.” In: Proc. European Conf. On Machine

Learning and Knowledge Discovery in Database ECML/PKDD. Vol. 3. 2020, pp. 211–226.

[3] G. Corani, D. Azzimonti, and N. Rubattu. “Probabilistic reconciliation of count time

series”. In: International Journal of Forecasting 40.2 (2024), pp. 457–469.

[4] T. Gneiting and M. Katzfuss. “Probabilistic forecasting”. In: Annual Review of Statis-

tics and Its Application 1.1 (2014), pp. 125–151.

[5] R. J. Hyndman, R. A. Ahmed, G. Athanasopoulos, and H. L. Shang. “Optimal com-

bination forecasts for hierarchical time series”. In: Computational Statistics & Data

Analysis 55.9 (2011), pp. 2579–2589.

[6] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. “The M5 competition: Background,

organization, and implementation”. In: International Journal of Forecasting 38.4

(2022), pp. 1325–1336.

[7] S. L. Wickramasuriya, G. Athanasopoulos, and R. J. Hyndman. “Optimal forecast

reconciliation for hierarchical and grouped time series through trace minimization”.

In: Journal of the American Statistical Association 114.526 (2019), pp. 804–819.

[8] L. Zambon, A. Agosto, P. Giudici, and G. Corani. “Properties of the reconciled distri-

butions for Gaussian and count forecasts”. In: International Journal of Forecasting

In press (2024).

[9] L. Zambon, D. Azzimonti, and G. Corani. “Efficient probabilistic reconciliation of

forecasts for real-valued and count time series”. In: Statistics and Computing 34.1

(2024), p. 21.

[10] L. Zambon, D. Azzimonti, N. Rubattu, and G. Corani. “Probabilistic reconciliation

of mixed-type hierarchical time series”. In: The 40th Conference on Uncertainty in

Artificial Intelligence. 2024.

213

https://CRAN.R-project.org/package=bayesRecon
https://CRAN.R-project.org/package=bayesRecon


Mini-Symposium

Mathematical Frameworks and

Numerical Methods for Complex

Physical Systems



Preface to the Symposium

Nella Rotundo, Organizer

Department of Mathematics “Ulisse Dini”, University of Florence, Italy

This mini-symposium will bring together young applied mathematicians to discuss re-

cent advancements in mathematical modeling and numerical analysis of complex physical

systems. The focus will be on Hybrid Boltzmann–BGK Models and Hydrodynamic Limits,

which use kinetic theory and fluid dynamics to describe the behavior of gas mixtures and

derive macroscopic equations from microscopic interactions. Discussions will also cover

Numerical Methods for Kinetic Equations, emphasizing the development and analysis of

computational algorithms that ensure high accuracy, stability, conservation, and positiv-

ity. Additionally, the Schrödinger-Poisson System will be examined, focusing on quantum

mechanical modeling and numerical techniques for solving the Schrödinger equation in

quantum devices. Lastly, the symposium will address Classical and Quantum Transport

Models, studying transport phenomena using equations like the Wigner equation and

exploring optimal control problems in both classical and quantum contexts.
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Kinetic equations are well known for their applications in several fields such as gas

dynamics [5], plasma physics [12], traffic flow [11], swarming dynamics [4], and socioeco-

nomic modelling [13]. For this reason, several numerical methods for solving this type of

equations have been introduced and studied in the last decades. Among these, there are

the Eulerian methods, which consist of a direct discretization of the involved equation

on an Eulerian grid. Although this approach provides an highly accurate approximation

of the solution with good preservation of underlying fundamental properties of the sys-

tem, such as the positivity of the solution [10], it suffers from classic CFL condition on

the time step, which may compromise the efficiency of the schemes. Particle methods

are another class of approaches that recently gained popularity. This class of methods

includes the Direct Simulation Monte Carlo (DSMC) [1], which approximates the Boltz-

mann equation of rarefied gas dynamics by simulating pairwise collisions stochastically,

and the particle-in-cell methods [2] widely adopted in plasma physics, where the unknown

PDF is approximated by Delta functions centred on a finite number of macroparticles tra-

jectories determined by Newton’s laws. Stochastic methods are advantageous because

they are able to better handle the convection term and avoid memory waste, expansive

computations of integral terms and CFL restrictions, and automatically preserves macro-

scopic moments. Despite these benefits, Stochastic methods are strongly affected by

noise, and thus require a prohibitive amount of computations to produce an accurate so-

lutions, especially when the solution is close to thermodynamical equilibrium.

Recently, semi-Lagrangian schemes have shown promising results in terms of accu-

racy and stability across a wide range of problems including Boltzmann equations [3],

BGK equations [6, 9], and Vlasov-type equations [8]. These methods rely on a Cartesian

mesh, but they handle the convective part by considering the Lagrangian formulation of

the given equation and applying a time scheme over characteristics. After that, the PDF is

reconstructed on internal values of the mesh through a suitable interpolation technique.

The main advantage of semi-Lagrangian methods is that the CFL conditions are much less

restricted if compared to Eulerian-based methods, resulting in a higher efficiency and

avoiding accumulation of interpolation errors. Regardless, significant conservation er-

rors may appear even with high order time schemes and spatial reconstructions when

non-linear interpolation techniques are involved.
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The talk is divided in two parts. In the first part, we review conservative semi-Lagrangian

schemes for kinetic equations, which allow conservation of density, mean velocity and

temperature by using a conservative reconstruction introduced in [7] together with suit-

able techniques for ensuring conservation in presence of Boltzmann or BGK operators.

In the second part of the talk, we present our original contribution on the preservation

of some fundamental properties of the equations, in particular we discuss the positivity

preservation of the solution, which is often not guaranteed for semi-Lagrangian schemes.
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A Resonant Tunnelling Diode (RTD) is a semiconductor device that thanks to its prop-

erties (low power, high-speed, compatibility with MOSFETs...) has gained increasing rel-

evance in the electronic field. The typical structure of a resonant tunnelling diode is a

Double Barrier Quantum Well Structure.

The aim of this talk is to introduce a new strategy to get stationary solutions of a RTD

in a ballistic regime. Following the approach of [4, 6], we treat the device as an open-

quantum system of one dimension, composed of an active region and two large reser-

voirs which are in thermal equilibrium and constant potential. The active region, which

is the region where electrons are injected and the relevant physical effects take place,

consists of a quantum well surrounded by barriers [4, 6]. The length of the device is sup-

posed to be L so that the computational domain to consider is [0, L]. The active area, is

also divided in three regions: two of them equipped with high doping densityn1D and one

with low density n2D [4, 6]:

nD(x) =

{
n1D if x ∈ [0, a1] ∪ [a6, L]

n2D else

where ai, i = 1, . . . , 6 are points of the domain such that a1 < a2 < . . . < a6. In

addition, we apply to the active region an electrostatic potential Ve whose expression

can be found [4]. The waves ψ of the electrons injected at x = 0 or x = L satisfy the

stationary Schrödinger equation and according to the sign of the momentum p, a suitable

set of boundary conditions. In particular, we get that in the active region, the equation

to solve is [4, 6]:

− h̄2

2m∗Ψ
′′ − qV (x)Ψ = EΨ (75.1)

under the conditions:

• if p > 0:

Ψ′(L) = ip+(p)
h̄ Ψ(L)

2iph̄ = iph̄Ψ(0) + Ψ′(0)
(75.2)
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withE = p2

2m∗ − qV0 and

p+(p) =

{√
p2 + 2m∗q(VL − V0) if p2 + 2m∗q(VL − V0) > 0

i
√
−p2 − 2m∗q(VL − V0) otherwise

• if p<0:

Ψ′(0) = −ip−(p)
h̄ Ψ(0)

2iph̄ = iph̄Ψ(L) + Ψ′(L)
(75.3)

withE = p2

2m∗ − qVL and

p−(p) =

{√
p2 − 2m∗q(VL − V0) if p2 − 2m∗q(VL − V0) > 0

i
√
2m∗q(VL − V0)− p2 otherwise

In literature there are several numerical methods to solve these equations [1, 4, 6].

Our approach to the problem consists in writing the wave functionψ in terms of the phase

functionS(x) and the density functionn(x), leading toψ(x) =
√
n(x) exp

iS(x)
h̄ . Then, by

substitutingψ(x) =
√
n(x) exp

iS(x)
h̄ in the equations (75.1), (75.2), (75.3), we then obtain

the following quantum hydrodynamic model [5]:{
div
(

n
m∗∇S

)
= 0

|∇S|2
2m∗ − h̄2

2m∗
1√
n
∆
√
n− qV = E

under the conditions1:

• if p > 0 and p2 + 2m∗q(VL − V0) > 0:

cos

(
S(0)

h̄

)
n′(0)

2
√
n(0)

− p

h̄

√
n(0) sin

(
S(0)

h̄

)
− sin

(
S(0)

h̄

)
S′(0)

h̄

√
n(0) = 0

2p

h̄
= cos

(
S(0)

h̄

)
p

h̄

√
n(0) + cos

(
S(0)

h̄

)
S′(0)

h̄

√
n(0) + sin

(
S(0)

h̄

)
n′(0)

2
√
n(0)

n′(L) = 0 S′(L) = p+(p)

• if p > 0 and p2 + 2m∗q(VL − V0) < 0:

cos

(
S(0)

h̄

)
n′(0)

2
√
n(0)

− p

h̄

√
n(0) sin

(
S(0)

h̄

)
− sin

(
S(0)

h̄

)
S′(0)

h̄

√
n(0) = 0

2p

h̄
= cos

(
S(0)

h̄

)
p

h̄

√
n(0) + cos

(
S(0)

h̄

)
S′(0)

h̄

√
n(0) + sin

(
S(0)

h̄

)
n′(0)

2
√
n(0)

n′(L)

2
√
n(L)

+

√
n(L)

h̄

√
−p2 − 2m∗q(VL − V0) = 0

√
n(L)

h̄
S′(L) = 0

1the value ofE depends on the sign of p
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• if p < 0 and p2 − 2m∗q(VL − V0) > 0:

n′(0) = 0 S′(0) = −p−(p)

cos

(
S(L)

h̄

)
n′(L)

2
√
n(L)

− p

h̄

√
n(L) sin

(
S(L)

h̄

)
− sin

(
S(L)

h̄

)
S′(L)

h̄

√
n(L) = 0

2p

h̄
= cos

(
S(L)

h̄

)
p

h̄

√
n(L) + cos

(
S(L)

h̄

)
S′(L)

h̄

√
n(L) + sin

(
S(L)

h̄

)
n′(L)

2
√
n(L)

• if p < 0 and p2 − 2m∗q(VL − V0) < 0:

cos

(
S(L)

h̄

)
n′(L)

2
√
n(L)

− p

h̄

√
n(L) sin

(
S(L)

h̄

)
− sin

(
S(L)

h̄

)
S′(L)

h̄

√
n(L) = 0

2p

h̄
= cos

(
S(L)

h̄

)
p

h̄

√
n(L) + cos

(
S(L)

h̄

)
S′(L)

h̄

√
n(L) + sin

(
S(L)

h̄

)
n′(L)

2
√
n(L)

n′(0)

2
√
n(0)

−
√
n(0)

h̄

√
−p2 + 2m∗q(VL − V0) = 0

√
n(0)S′(0) = 0

The goal of my talk is to show how to handle these equations, discuss the advantages

of this procedure, and present some numerical results.
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We present a class of hybrid kinetic descriptions modelling the dynamics of an inert

mixture of monatomic gases [1]. These mixed models combine the positive features of

known Boltzmann and BGK formulations; in particular, the collision phenomenon domi-

nating the gas evolution is modelled by Boltzmann terms, which describe in detail the mi-

croscopic interactions; the remaining processes are modelled by BGK operators, resulting

in more manageable from an analytical and numerical point of view. The relaxation terms

are inspired by a recent relaxation model [3], miming the structure of the Boltzmann col-

lision operator as the sum of binary contributions, one for each type of interaction.

The evolution of the mixture is governed by a set of integro-differential equations

∂fi
∂t

+ v · ∇xfi = Qi =

N∑
j=1

[
χijQ̂ij + (1− χij)Q̃ij

]
, i = 1, . . . , N ,

where fi is the distribution function of the i−th component. The term Q̂ij is the bi-

species Boltzmann operator while the operator Q̃ij is of BGK type. The coefficientsχij ∈
{0, 1}, such that χij = χji, allow us to fix which binary interactions are described by

Boltzmann integrals or by BGK relaxation operators. The classical Boltzmann model for

inert mixtures is recovered by the option χij = 1, for any i, j = 1, . . . , N , while the BGK

model proposed in [3] is obtained by the option χij = 0, for any i, j = 1, . . . , N .

The model is proved to be consistent; more precisely, one can show

- the positivity of species temperatures;

- the usual conservation of global momentum and total energy;

- the Maxwellian equilibrium solutions as functions of the global mean velocity and

temperature;

- the existence of an entropy functional guaranteeing the relaxation to the equilib-

rium.

Starting from the kinetic description, we can deduce proper evolution equations for

the main macroscopic fields (densities, mean velocities and temperatures) in different

hydrodynamic regimes (when the Knudsen number goes to 0), by the standard Chapman-

Enskog procedure based on the expansion of the distribution functions.
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In this talk, we analyze the regime dominated by the entire collision process, leading

to classical Euler and Navier-Stokes equations for mixtures, and the regime dominated by

intra-species interactions; these latter results are better suited to describe gas mixtures

whose components have very disparate masses [4] (e.g. ions and electrons [5]), and

leads to multi-velocity and multi-temperature Euler and Navier-Stokes equations [2].

Acknowledgements. This work is supported by the Italian ministry MUR with the project Mathe-
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Engineering a quantum system that evolves into a target state has relevance in quan-

tum information science [13]. In particular, the realization of a controllable quantum sys-

tem is an interesting topic in modern physical science [10]. In recent years a new promis-

ing platform emerges in the area of quantum simulation and quantum computing based

on the so-called optical tweezers [4, 7, 9, 17], highly focused laser beams able to trap

and move individual neutral atoms. In this setting, it is possible to manipulate and move

the tweezers and the atoms trapped within them in such a way as to create an array of

individual atoms with arbitrary geometry [2, 3, 18, 19]. Arrays of atoms represent a use-

ful resource for quantum information because atoms in optical tweezers can be used as

elementary quantum information carriers.

An optical tweezer is an optical dipole trap that is tightly focused on a length scale of

around 1µm. Thanks to light-assisted collisions it is possible to trap one single atom in op-

tical tweezers making this tool able to control and address single atoms. The idea of trap-

ping individual atoms can be extended to many optical tweezers that can be assembled

to form an array of traps. The assembly of several optical tweezers can be experimentally

achieved by making use of devices, like the acousto-optical-deflectors (AODs) and light

modulators (SLMs) [8]. The position and the intensity of these tightly focused dipole

traps can be individually controlled. This technique takes an initially randomly loaded

trap array and rearranges the atoms into an arbitrary configuration, most usually into an

array with no defects or empty traps between atoms [6, 14, 16]. Typically, in the experi-

ments, the quantum platform is based on Rydberg atoms of rubidium or strontium, and

the motivation for using this platform is well known in literature [1, 5, 11, 15, 20].

In this context, we aim to formulate an optimal control problem on the transport of

atoms in optical tweezers. The problem is formulated as an ensemble optimal control

problem based on the Wigner equation. The optimality system consists of the forward

Wigner problem, the adjoint problem, and the optimality condition [12]. We describe any

noise or perturbation of the ideal case in terms of a Fokker-Plank term included in the

Wigner equation.

In particular, we consider the following simple scenario. We consider two static opti-

cal traps at a distance d of the order of 10µm. We assume that one static trap is initially

occupied by a single Sr atom and the second trap (target trap) is void. We derive an op-

timal control procedure aimed at steering the atom from the first to the target position

under the guidance of optical tweezers. The time-dependent optical tweezers field al-
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lows to move the atoms from an initial to a target position. The main parameters are

designed in order to achieve some optimality conditions by maximizing the success rate

of the protocol and at the same time minimizing the energetic cost of the control. For the

sake of simplicity, we assume that the system is confined to a 1D region. The optical field

of the tweezers and the static traps are modelled by the Gaussian field where the con-

trolled parameters are the mean position and the strength of the Gaussian distribution.

The control parameters are obtained by minimizing the distance of the particle distribu-

tion function with a target region of the phase space and at the same time maintaining

the energy cost for the control as small as possible.

We describe the optimal control of the trajectories of flying atoms driven by the op-

tical tweezers field at various degrees of precision. At first, we assume that the particle

dynamics is completely deterministic. We assume that each atom is well described by a

single classical trajectory with the known initial position that evolves without any source

of external noise. This idealized description of the atom dynamics allows us to calculate

the optimal trajectory efficiently. In a second step, we introduce in our model the main

sources of uncertainties found in the experimental protocol to manipulate flying neutral

atoms. The initial condition of the atom is known only approximately and various sources

of external perturbations are typically present. For this reason, we describe the atom sys-

tem as a classical ensemble of particles described by a statistical distribution in the phase

space. Dissipation effects and external noises are modelled by a Liouville-Fokker-Plank

equation for the particle density. As an alternative, we include the source of noise in the

terms describing a stochastic signal over the control parameters. We remark that at this

stage the atom dynamics is purely classical. Finally, we describe the atom dynamics in a

fully quantum context. In order to highlight the correction to the previous classical results

we adopt a kinetic description of the quantum motion provided by the Wigner formalism

of pseudo-distribution function. Due to the non-linearity of the optimality systems asso-

ciated with the optimal control, each step of our modelization of the controlled dynamics

is used as a convenient initial guess to initialize the optimization procedure.
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The finite element method (FEM) is a highly versatile technique widely employed for

the numerical solution of partial differential equations. In addressing complex scenar-

ios, strategies such as enriched finite element methods (EFEM) and isogeometric analysis

(IGA) come to the fore. EFEM involves augmenting the approximation space with suitable

enrichment functions, enhancing its capacity to address challenging phenomena like sin-

gularities and discontinuities. Conversely, IGA takes advantage of spline-based geometric

representations to enhance the integration of geometric design and analysis. These ap-

proaches represent significant advancements in computational mechanics and numerica

analysis.

This mini-symposium focuses on presenting recent applications and tools that advance

both EFEM formulations and robust IGA techniques. It brings together young researchers
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A finite element is defined as a triplet (Kd,FKd
,ΣKd

), where:

• Kd is a polytope in Rd,

• FKd
is a vector space of dimension n composed of real-valued functions defined on

Kd, also referred to as trial functions,

• ΣKd
= {Lj : j = 1, . . . , n} is a set of linearly independent linear functionals from

the vector space FKd
, also known as degrees of freedom, such that FKd

is ΣKd
-

unisolvent. In simpler terms, if f ∈ FKd
and

Lj(f) = 0, j = 1, . . . , n,

then f = 0 [7].

The finite element method stands out as a highly favored approach for numerically solv-

ing partial differential equations, which are commonly encountered in engineering and

mathematical modeling, over domains D ⊂ Rd, where d ≥ 1. Its widespread adop-

tion can be attributed, in part, to its adaptability to different geometries. In this method,

the domain D̄ is partitioned into polytopes, and for each of them, a local approximation

within FKd
is computed to approximate the solution of the partial differential equation.

The global approximation is then defined as a piecewise function composed of the local

approximations.

The finite element can be classified as either conforming or nonconforming, depend-

ing on whether the global approximation exhibits discontinuities at the subdomain bound-

aries. Indeed, standard linear finite elements, which typically use polynomial functions

within the FKd
approximation space, might prove ineffective for solving problems in-

volving singularities. To address this limitation, various strategies have been proposed.

Among these, a notable approach involves augmenting the approximation space FKd

with appropriate enrichment functions.

In particular, given the finite element (Kd,FKd
,ΣKd

), the task at hand is to deter-

mine:

How to select suitable enrichment functions e1, . . . , eN , such that the triplet (Kd, Fenr
Kd
,

Σenr
Kd

) constitutes a new finite element?
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One of the fundamental finite elements is the standard triangular linear finite element,

specifically defined within two-dimensional Euclidean space. This element is

P1(S2) = (S2,P1(S2),Σ
lin
S2
),

where S2 is a non-degenerate triangle with vertices v0, v1, v2, P1(S2) is the space of

all bivariate linear polynomials and Σlin
S2

is the set of point evaluation functionals at the

vertices of S2. Despite its widespread application, the standard triangular linear finite el-

ement sometimes fails to deliver satisfactory outcomes due to the low-order approxima-

tion inherent in the associated trial functions. To improve the approximation accuracy,

we explore the concept of enriching P1(S2) with suitable enrichment functions. More

precisely, in this work we focus on the development of a unified and general framework

for the enrichment of standard triangular linear finite elements in R2 and standard sim-

plicial linear finite elements in Rd. As we have already mentioned, a crucial point in this

approach is to determine the conditions on the enrichment functions so that they gen-

erate a finite element. In [3], we proposed a polynomial enrichment technique for the

standard triangular linear finite element, leveraging it to enhance the triangular Shep-

ard operator. Subsequently, in [2], we introduced a novel class of nonconforming finite

elements by enriching the standard triangular linear finite element with linearly indepen-

dent continuous enrichment functions (not necessarily polynomials) {ei : i = 0, 1, 2}
such that

ei(vj) = 0, i, j = 0, 1, 2.

Additionally, we established necessary and sufficient conditions on the enrichment func-

tions to guarantee the validity of the enriched triplet as a finite element. We demon-

strated that the approximation error can be decomposed into two components: one as-

sociated with the standard triangular linear finite element and the other dependent on

the enrichment functions. This decomposition facilitated the derivation of error bounds

in both L∞-norm and L1-norm.

Building upon these findings, in [4], we extended our investigations to enrich the stan-

dard simplicial linear finite element defined as

P1(Sd) = (Sd,P1(Sd),Σ
lin
Sd
),

where Sd represents a non-degenerate simplex in Rd with vertices v0, . . . ,vd, P1(Sd)
denotes the space of all linear polynomials in Rd, and Σlin

Sd
is the set of point evaluation

functionals at the vertices ofSd. We enriched the standard simplicial linear finite element

P1(Sd) with d + 1 linearly independent continuous functions {ei : i = 0, . . . , d}, such

that ei(vj) = 0, i, j = 0, . . . , d.

In our subsequent work [5], we proposed a general approach to enrich the standard

simplicial linear finite element P1(Sd) without imposing restrictive conditions on the en-

richment functions, such as their vanishing at the vertices of Sd.

Another commonly used finite element in practical applications is the simplicial vector

linear finite element, defined as

PPP1(Sd) = (Sd,PPP 1(Sd),ΣΣΣ
lin
Sd
),
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where PPP1(Sd) represents the direct product, d times, of the vector space P1(Sd) with

itself, and

ΣΣΣlin
Sd

= {Lj : j = 0, . . . , d} ,

with Lj defined as

Lj(f) = f(vj) = [f1(vj), . . . , fd(vj)]
T , f = [f1, . . . , fd]

T , j = 0, . . . , d.

Although widely used for solving the stationary Stokes equations, the simplicial vector lin-

ear finite element exhibits limitations when applied to complex scenarios. In [1], Bernardi

and Raugel proposed a polynomial enrichment of the standard simplicial vector linear fi-

nite element, finding application across a broad spectrum of engineering computation

fields. However, the use of polynomial enrichment functions often results in issues re-

lated to linear dependence. In alignment with previous research, we present a compre-

hensive strategy for enriching the simplicial vector linear finite element with nonpolyno-

mial enrichment functions [6]. This enriched finite element, adaptable to any simplex,

represents an extension of Bernardi Raugel finite element, offering improved versatility

and applicability.
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